期刊文献+
共找到1,193篇文章
< 1 2 60 >
每页显示 20 50 100
Study of microstructure evolution of magnesium alloy cylindrical part with longitudinal inner ribs during hot flow forming by coupling ANN-modified CA and FEA
1
作者 Jinchuan Long Gangfeng Xiao +1 位作者 Qinxiang Xia Xinyun Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3229-3244,共16页
Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.How... Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.However,due to the thermo-mechanical coupling effect and the existence of stiffened structure,complex microstructure evolution and uneven microstructure occur easily at the cylindrical wall(CW)and inner rib(IR)of Mg alloy thin-walled CPLIRs during the HFF.In this paper,a modified cellular automaton(CA)model of Mg alloy considering the effects of deformation conditions on material parameters was developed using the artificial neural network(ANN)method.It is found that the ANN-modified CA model exhibits better predictability for the microstructure of hot deformation than the conventional CA model.Furthermore,the microstructure evolution of ZK61 alloy CPLIRs during the HFF was analyzed by coupling the modified CA model and finite element analysis(FEA).The results show that compared with the microstructure at the same layer of the IR,more refined grains and less sufficient DRX resulted from larger strain and strain rate occur at that of the CW;various differences of strain and strain rate in the wall-thickness exist between the CW and IR,which leads to the inhomogeneity of microstructure rising firstly and declining from the inside layer to outside layer;the obtained Hall-Petch relationship between the measured microhardness and predicted grain sizes at the CW and the IR indicates the reliability of the coupled FEA-CA simulation results. 展开更多
关键词 Magnesium alloy cylindrical part with longitudinal inner ribs hot flow forming Microstructure evolution Artificial neural network Cellular automaton Finite element
下载PDF
Forming defects in aluminum alloy hot stamping of side-door impact beam 被引量:12
2
作者 周靖 王宝雨 +2 位作者 林建国 傅垒 马闻宇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3611-3620,共10页
The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive... The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s. 展开更多
关键词 aluminum alloy hot stamping forming defects numerical simulation blank holder force
下载PDF
Process parameters optimization of Ti-6Al-4V alloy sheet during hot stretch-creep forming 被引量:3
3
作者 肖军杰 李东升 +4 位作者 李小强 丁盼 赵凯 黄烜昭 续明进 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第2期420-428,共9页
Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure,... Hot stretch-creep forming (SCF) is a novel technique to produce hard-to-form thin-walled metal components. Comprehensively considering the analysis results of the springback angle, yield strength and microstructure, four hot SCF process parameters including temperature, stretch velocity, post stretch percentage and dwelling time of a Ti-6Al-4V alloy sheet were optimized using an orthogonal experiment. The results reveal that temperature is the most important factor on springback angle. The yield strength of the deformed material in 0° direction increases, while those in directions of 45° and 90° fluctuate around the original value. After hot SCF, the shape of some a phases changes from short thin grains to long slender ones, and the microhardness changes very little. The optimized parameters with temperature of 700 ℃, stretch velocity of 5 mm/min, post stretch percentage of 2% and dwelling time of 8 min are achieved finally. 展开更多
关键词 Ti-6Al-4V alloy hot stretch-creep forming SPRINGBACK orthogonal experiment OPTIMIZATION
下载PDF
Discrete element and finite element coupling simulation and experiment of hot granule medium pressure forming 被引量:3
4
作者 董国疆 赵长财 +1 位作者 押媛媛 赵建培 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4089-4101,共13页
The granule medium of discreteness is supposed to be continuous(Drucker-Prager model) in the existing finite element simulation analysis on the hot granule medium pressure forming(HGMF) process, so the granule med... The granule medium of discreteness is supposed to be continuous(Drucker-Prager model) in the existing finite element simulation analysis on the hot granule medium pressure forming(HGMF) process, so the granule medium may produce tensile stress in the process of pressure-transferring and flowing, which does not coincide with the reality. The analysis method, discrete element and finite element(DE-FE) coupling simulation, is proposed to solve the problem. The material parameters of simulation model are obtained by the pressure-transfer performance test of granule medium and the hot uniaxial tensile test of sheet metal. The DE-FE coupling simulation platform is established by adopting Visual Basic language. The features in the process that AA7075-T6 conical parts are formed by the HGMF process are analyzed and verified by the process test. The studies show that the results of DE-FE coupling simulation coincide well with the test results, which provides a new analysis method to solve the mechanics problem in the coupling of discrete and continuum. 展开更多
关键词 granule medium aluminum alloy sheet hot forming finite element discrete element
下载PDF
Hot Granules Medium Pressure Forming Process of AA7075 Conical Parts 被引量:16
5
作者 DONG Guojiang ZHAO Changcai +1 位作者 PENG Yaxin LI Ying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期580-591,共12页
High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing ... High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing flexible mould forming process, the heat resistance of the medium and pressurizing device makes the application of aluminum alloy plate thermoforming restricted. To solve this problem, the existing medium is replaced by the heat-resisting solid granules and the general pressure equipments are applied. Based on the pressure-transfer performance test of the solid granules medium, the feasibility that the assumption of the extended Drucker-Prager linear model can be used in the finite element analysis is proved. The constitutive equation, the yield function and the theoretical forming limit diagram(FLD) of AA7075 sheet are established. Through the finite element numerical simulation of hot granules medium pressure forming(HGMF) process, not only the influence laws of the process parameters, such as forming temperature, the blank-holder gap and the diameter of the slab, on sheet metal forming performance are discussed, but also the broken area of the forming process is analyzed and predicted, which are coincided with the technological test. The conical part whose half cone angle is 15° and relative height H/d0 is 0.57, is formed in one process at 250℃. The HGMF process solves the problems of loading and seal in the existing flexible mould forming process and provides a novel technology for thermoforming of light alloy plate, such as magnesium alloy, aluminium alloy and titanium alloy. 展开更多
关键词 granules medium aluminum alloy sheet DRAWING hot forming forming limit diagram
下载PDF
Application of Hot Forming High Strength Steel Parts on Car Body in Side Impact 被引量:19
6
作者 SUN Hongtu HU Ping +3 位作者 MA Ning SHEN Guozhe LIU Bo ZHOU Dinglu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期252-256,共5页
Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. Howeve... Lightweight structure is an important method to increase vehicle fuel efficiency. High strength steel is applied for replacing mild steel in automotive structures to decrease thickness of parts for lightweight. However, the lightweight structures must show the improved capability for structural rigidity and crash energy absorption. Advanced high strength steels are attractive materials to achieve higher strength for energy absorption and reduce weight of vehicles. Currently, many research works focus on component level axial crash testing and simulation of high strength steels. However, the effects of high strength steel parts to the impact of auto body are not considered. The goal of this research is to study the application of hot forming high strength steel(HFHSS) in order to evaluate the potential using in vehicle design for lightweight and passive safety. The performance of HFHSS is investigated by using both experimental and analytical techniques. In particular, the focus is on HFHSS which may have potential to enhance the passive safety for lightweight auto body. Automotive components made of HFHSS and general high strength steel(GHSS) are considered in this study. The material characterization of HFHSS is carried out through material experiments. The finite element method, in conjunction with the validated model is used to simulate the side impact of a car with GHSS and HFHSS parts according to China New Car Assessment Programme(C-NCAP) crash test. The deformation and acceleration characteristics of car body are analyzed and the injuries of an occupant are calculated. The results from the simulation analyses of HFHSS are compared with those of GHSS. The comparison indicates that the HFHSS parts on car body enhance the passive safety for the lightweight car body in side impact. Parts of HFHSS reduce weight of vehicle through thinner thickness offering higher strength of parts. Passive safety of lightweight car body is improved through reduction of crash deformation on car body by the application of HFHSS parts. The experiments and simulation are conducted to the HFHSS parts on auto body. The results demonstrate the feasibility of the application of HFHSS materials on automotive components for improved capability of passive safety and lightweight. 展开更多
关键词 hot forming high strength steel LIGHTWEIGHT side impact car body
下载PDF
Influence of process parameters on properties of AA6082 in hot forming process 被引量:10
7
作者 Wen-yu MA Bao-yu WANG +1 位作者 Jian-guo LIN Xue-feng TANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第11期2454-2463,共10页
The influences of process parameters on mechanical properties of AA6082in the hot forming and cold-die quenching(HFQ)process were analysed experimentally.Transmission electron microscopy was used to observe the precip... The influences of process parameters on mechanical properties of AA6082in the hot forming and cold-die quenching(HFQ)process were analysed experimentally.Transmission electron microscopy was used to observe the precipitate distribution and to thus clarify strengthening mechanism.A new model was established to describe the strengthening of AA6082by HFQ process in this novel forming technique.The material constants in the model were determined using a genetic algorithm tool.This strengthening model for AA6082can precisely describe the relationship between the strengths of formed workpieces and process parameters.The predicted results agree well with the experimental ones.The Pearson correlation coefficient,average absolute relative error,and root-mean-square error between the calculated and experimental hardness values are0.99402,2.0054%,and2.045,respectively.The model is further developed into an FE code ABAQUS via VUMAT to predict the mechanical property variation of a hot-stamped cup in various ageing conditions. 展开更多
关键词 aluminium alloy AA6082 mechanical properties strengthening model hot forming
下载PDF
FORMING PROCESS OF HOT-EXTRUDED SiCw/6061Al COMPOSITES(Ⅰ) 被引量:3
8
作者 Zhang Wenlong, Cai Liuchun, Peng Huaxin, Wang Dezun and Yao Zhongkai School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China 《中国有色金属学会会刊:英文版》 CSCD 1998年第3期77-81,共5页
1INTRODUCTIONInrecentyears,moreandmorecontinuouslyordiscontinuouslyreinforcedmetalmatrixcomposites(MMCs)hav... 1INTRODUCTIONInrecentyears,moreandmorecontinuouslyordiscontinuouslyreinforcedmetalmatrixcomposites(MMCs)havebeenusedtomakest... 展开更多
关键词 SiC WHISKER aluminium MATRIX composite forming of hot EXTRUSION
下载PDF
Medium-Mn steels for hot forming application in the automotive industry 被引量:8
9
作者 Shuo-shuo Li Hai-wen Luo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期741-753,共13页
Advanced high-strength steels have been widely used to improve the crashworthiness and lightweight of vehicles.Different from the popular cold stamping,hot forming of boron-alloyed manganese steels,such as 22MnB5,coul... Advanced high-strength steels have been widely used to improve the crashworthiness and lightweight of vehicles.Different from the popular cold stamping,hot forming of boron-alloyed manganese steels,such as 22MnB5,could produce ultra-high-strength steel parts without springback and with accurate control of dimensions.Moreover,hot-formed medium-Mn steels could have many advantages,including better mechanical properties and lower production cost,over hot-formed 22MnB5.This paper reviews the hot forming process in the automotive industry,hot-formed steel grades,and medium-Mn steel grades and their application in hot forming in depth.In particular,the adaptabilities of medium-Mn steels and the presently popular 22MnB5 into hot forming were compared thoroughly.Future research should focus on the technological issues encountered in hot forming of medium-Mn steels to promote their commercialization. 展开更多
关键词 medium-Mn transformation-induced plasticity steel hot forming mechanical properties retained austenite BAKING
下载PDF
Simulation and prediction of microstructure in hot forming of metals 被引量:2
10
作者 陈慧琴 张巧丽 +1 位作者 刘建生 郭会光 《中国有色金属学会会刊:英文版》 EI CSCD 2000年第4期465-468,共4页
The evolution of microstructure seriously influences the forming processes and the quality of forgings in metal hot forming processes, it is therefore desirable to gain information on the microstructure evolution of a... The evolution of microstructure seriously influences the forming processes and the quality of forgings in metal hot forming processes, it is therefore desirable to gain information on the microstructure evolution of a process by means of computer simulation, not by conventional trial and error method that is time consuming, expensive and does not always lead to optimum results. Models for microstructural simulation and prediction were set up according to the evolution of microstructure during hot forming and cooling processes. The expanding extrusion complex hot forming and cooling processes, as an example, were simulated. 展开更多
关键词 METAL hot forming MICROSTRUCTURAL simulation quality prediction
下载PDF
Deformation Behavior and Microstructure Evolution of AA2024-H18 Aluminum Alloy by Hot Forming with Synchronous Cooling Operations 被引量:2
11
作者 Chen Guoliang Chen Minghe +1 位作者 Wang Ning Sun Jiawei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第5期504-513,共10页
Hot forming with synchronous cooling(HFSC)is a novel technique for heat-treatable,high-strength aluminum alloys,which allows the alloys to acquire good formability,negligible springback,rapid processing and better mec... Hot forming with synchronous cooling(HFSC)is a novel technique for heat-treatable,high-strength aluminum alloys,which allows the alloys to acquire good formability,negligible springback,rapid processing and better mechanical properties.However,the deformation behavior and microstructure evolution of the alloys during HFSC are complex and need to be studied due to the temperature and strain rate effects.Uniaxial tensile tests in a temperature range of 250—450℃and a strain rate range of 0.01—1 s-1 for AA2024-H18 aluminum alloy sheet are conducted with a Gleeble-3500 Thermal-Mechanical Simulation Tester.And based on metallography observation and analysis,AA2024-H18 aluminum alloy sheet in HSFC process exhibits hardening and dynamic recovery behaviors within the temperature range of 250—450 ℃.Strain rate shows different effects on ductility at different temperatures.Compared with traditional warm/hot forming methods,AA2024-H18 aluminum alloy achieves a better work-hardening result through HFSC operations,which promises an improved formability at elevated temperature and thus good mechanical properties of final part.After HSFC operations,the microstructure of the specimens is composed of elongated static recrystallization grain. 展开更多
关键词 hot forming with synchronous cooling AA2024 aluminum alloy deformation behavior microstructure evolution
下载PDF
Research on technological parameters of pressure forming with hot granule medium on AA7075 sheet 被引量:2
12
作者 董国疆 赵长财 +2 位作者 赵建培 押媛媛 曹秒艳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期765-777,共13页
Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of ... Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of light alloy sheet parts can be realized based on the properties of granule medium, such as withstanding high temperature and pressure, filling well, sealing and loading easily. In this work, the forming of AA7075 cylindrical parts by HGMF process is taken as an example to establish the constitutive relation and forming limit diagram (FLD) of AA7075 sheet which is related to temperature by hot uniaxial tensile test of sheet metal. Based on the assumption that granule medium is applied to extended Drucker-Prager linear material model, the finite element model of HGMF process is established and the effect of technological parameters, such as forming temperature, blank-holder gap and drawing ratio, on the sheet metal formability, is studied. The limit drawing ratio curve of AA7075 cylindrical parts at forming temperature of 175-300 ℃ is obtained by HGMF process test, and the limit drawing ratio reaches the maximum value of 1.71 at 250 ℃. The results of numerical simulation are consistent with the results of process test, and the forming force, distribution of wall thichness and form of instability are predicted correctly, which provides reference for the application of HGMF process. 展开更多
关键词 granule medium aluminum alloy sheet DRAWING hot forming forming limit diagram
下载PDF
Stress-strain analysis on AA7075 cylindrical parts during hot granule medium pressure forming 被引量:1
13
作者 董国疆 杨卓云 +2 位作者 赵建培 赵长财 曹秒艳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2845-2857,共13页
Hot granule medium pressure forming(HGMF) is a technology in which heat-resistant granules are used to replace liquids or gases in existing flexible-die forming technology as pressure-transfer medium. Considering the ... Hot granule medium pressure forming(HGMF) is a technology in which heat-resistant granules are used to replace liquids or gases in existing flexible-die forming technology as pressure-transfer medium. Considering the characteristic of granule medium that seals and loads easily, the technology provides a new method to realize the hot deep-drawing forming on high strength aluminum alloy sheet. Based on the pressure-transfer performance test of granule medium and the material performance test of AA7075-T6 sheet, plastic mechanics analysis is conducted for the areas, such as the flange area, force-transfer area and free deforming area, of cylindrical parts deep-drawn by HGMF technology, and the function relation of forming pressure is obtained under the condition of nonuniform distribution of internal pressure. The comparison between theoretical result and experimental data shows that larger deviation occurs in the middle and later period of forming process, and the maximum theoretical forming force is less than the experimental value by 24.6%. The variation tendency of the theoretical thickness curve is close to the practical situation, and the theoretical value basically agrees well with experimental value in the flange area and the top area of spherical cap which is in the free deforming area. 展开更多
关键词 granule medium aluminum alloy sheet DEEP-DRAWING hot forming limit drawing ratio
下载PDF
FEM analysis of vacuum hot bulge forming of Hastelloy C-276 thin-walled cylindrical workpiece 被引量:2
14
作者 朱智 张立文 顾森东 《Journal of Central South University》 SCIE EI CAS 2014年第8期3019-3023,共5页
A stress relaxation test has been carried out for Hastelloy C-276 at temperature of 800 ~C and initial stress level of 250 MPa. Based on the experimental stress relaxation curve, the relationship between creep strain ... A stress relaxation test has been carried out for Hastelloy C-276 at temperature of 800 ~C and initial stress level of 250 MPa. Based on the experimental stress relaxation curve, the relationship between creep strain rate and stress has been derived. Then, a set of creep constitutive equations has been built and the values of constants arising in the constitutive equations have been determined by fitting the creep strain rate-stress curve. Close agreement between computed results and experimental ones is obtained for stress relaxation data. The creep constitutive equation set has been integrated with the commercial FE (finite element) solver MSC.Marc via the user defined subroutine, CRPLAW, for the vacuum hot bulge forming process modelling of Hastelloy C-276 thin-walled cylindrical workpiece. The temperature field, the radius-direction displacement field and the stress-strain field are calculated and analyzed. Furthermore, the bulging dimension and the final internal diameter of workpiece are predicted and the test results verify the reliability of the finite element method. 展开更多
关键词 Hastelloy C-276 vacuum hot bulge forming creep constitutive equation finite element method
下载PDF
Microstructure evolution model based on deformation mechanism of titanium alloy in hot forming 被引量:8
15
作者 李晓丽 李淼泉 《中国有色金属学会会刊:英文版》 EI CSCD 2005年第4期749-753,共5页
The microstructure evolution in hot forming will affect the mechanical properties of the formed product. However, the microstructure is sensitive to the process variables in deformation process of metals and alloys. A... The microstructure evolution in hot forming will affect the mechanical properties of the formed product. However, the microstructure is sensitive to the process variables in deformation process of metals and alloys. A microstructure evolution model of a titanium alloy in hot forming, which included dislocation density rate and primary α phase grain size, was presented according to the deformation mechanism and driving forces, in which the effect of the dislocation density rate on the grain growth was studied firstly. Applying the model to the high temperature deformation process of a TC6 alloy with deformation temperature of 11331223K, strain rate of 0.0150s^-1 and height reduction of 30%, 40% and 50%, the material constants in the present model were calculated by the genetic algorithm(GA) based objective optimization techniques. The calculated results of a TC6 alloy are in good agreement with the experimental ones. 展开更多
关键词 钛合金 微结构 变形装置 锻造工艺
下载PDF
Flow characteristics of aluminum coated boron steel in hot press forming 被引量:6
16
作者 Jeong-Hwan JANG Jae-Ho LEE +1 位作者 Bye ong-Don JOO Young-Hoon MOON 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第4期913-916,共4页
The flow characteristics of aluminum coated boron steel in hot press forming were investigated.Furthermore,the effects of aluminum coated layer on press forming were analyzed during deep drawing.The results show that ... The flow characteristics of aluminum coated boron steel in hot press forming were investigated.Furthermore,the effects of aluminum coated layer on press forming were analyzed during deep drawing.The results show that aluminum coated boron steel exhibits a high sensitivity on temperature and strain rate.Aluminum coating layer appears in surface flaking in a temperature range of 700-800 ℃,but smooth surface is formed above 900 ℃. 展开更多
关键词 热压成型 流动特性 铝涂层 硼钢 表面剥落 温度范围 冲压成形 高灵敏度
下载PDF
Effect of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece 被引量:4
17
作者 王明伟 张立文 +2 位作者 裴继斌 李辰辉 张凡云 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第5期957-962,共6页
Temperature is one of the key parameters for BT20 titanium alloy cylindrical workpiece manufactured by vacuum hot bulge forming. A two-dimensional nonlinear thermo-mechanical coupled FE model was established. Numerica... Temperature is one of the key parameters for BT20 titanium alloy cylindrical workpiece manufactured by vacuum hot bulge forming. A two-dimensional nonlinear thermo-mechanical coupled FE model was established. Numerical simulation of vacuum hot bulge forming process of titanium alloy cylindrical workpiece was carried out using FE analysis software MSC Marc. The effects of temperature on vacuum hot bulge forming of BT20 titanium alloy cylindrical workpiece were analyzed by numerical simulation. The simulated results show that the Y-direction displacement and the equivalent plastic strain of the workpiece increase with increasing bulge temperature. The residual stress decreases with increasing bulge temperature. The optimal temperature range of BT20 titanium alloy during vacuum hot bulge forming is 750-850 ℃. The corresponding experiments were carried out. The simulated results agreed well with the experimental results. 展开更多
关键词 钛合金 真空热膨胀 温度作用 数字模拟
下载PDF
FEA technique of hot plate forming process using cell-typed die with cooling device
18
作者 Jung-Min LEE In-Kyu LEE +2 位作者 Kyung-Hun LEE Dae-Soon KIM Byung-Min KIM 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期831-837,共7页
Hot plate forming using a cell-typed die is a process for forming a large thick plate with a spherical shape for the manufacture of a large spherical LNG tank.Cell-typed upper and lower dies made of a framework of ste... Hot plate forming using a cell-typed die is a process for forming a large thick plate with a spherical shape for the manufacture of a large spherical LNG tank.Cell-typed upper and lower dies made of a framework of steel plates fitted to make a grid pattern are used in this process,and an air-cooling device is separately installed inside the lower die.A finite element analysis (FEA) technique was developed,which included hot forming,air flow,cooling and thermal deformation analysis for the hot plate forming process using the cell-typed die.Further,the convective and interface heat transfer coefficients were used to reproduce analytically the effects of the cooling device in the hot plate forming analysis.A small-scale model test of the process was conducted to verify the FEA technique.The analysis results show that the curvature of the final plate agrees well with that of the designed experiment within a maximum relative error of 0.03% at the corner of the plate. 展开更多
关键词 cell-typed DIE hot plate forming SPHERICAL LNG TANK heat transfer COEFFICIENT
下载PDF
SIMULATION OF HOT FORMING PROCESSION IN Mn18Cr18NSTEEL
19
作者 M. Guan, J. L. song and H. G. Guo Taiyuan Heavy Machinery Institute, Taiyuan 030024, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期434-438,共5页
In the hot forming of Mn18Cr18N steel, such problems as easy cracking, difficult controlling of forming paramenters often occur. In this paper,the variation rule of the plasticity of the steel, the starting mechanis... In the hot forming of Mn18Cr18N steel, such problems as easy cracking, difficult controlling of forming paramenters often occur. In this paper,the variation rule of the plasticity of the steel, the starting mechanism of micro-crack and its generating characteristics were studied with the combination of thermodynamic simulation test, micro-simulation and FEM, the related data of microstructure change and hot forming parameters were produced. The hot forming process of 600MW generator retaining ring was analyzed as an example. 展开更多
关键词 MN18CR18N hot forming FEM numerical simulation
下载PDF
Study on Temperature Distribution of Specimens Tested on the Gleeble 3800 at Hot Forming Conditions
20
作者 Tao Gao Long Ma Xiao-Guo Peng 《Journal of Electronic Science and Technology》 CAS 2014年第4期419-423,共5页
Taking Ti-6Al-4V specimens into consideration, the coupled thermal-electrical finite element model has been developed in Abaqus/Explicit to simulate the heating process in Gleeble 3800 and to study the temperature his... Taking Ti-6Al-4V specimens into consideration, the coupled thermal-electrical finite element model has been developed in Abaqus/Explicit to simulate the heating process in Gleeble 3800 and to study the temperature history and distribution in the specimen. In order to verify the finite element (FE) results, thermal tests are carried out on Gleeble 3800 for a Ti-6Al-4V specimen with a slot to in the centre of the specimen. The effects of the specimen size, heating rate, and air convection on the temperature distribution over the specimen have been investigated. The conclusions can be drawn as: the temperature gradient of the specimen decreases as the specimen size, heating rate, and vacuuming decrease. 展开更多
关键词 Coupled thermal-electrical simulation hot forming thermo-mechanical testing temperaturedistribution.
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部