In this paper,we propose a new conservative high-order semi-Lagrangian finite difference(SLFD)method to solve linear advection equation and the nonlinear Vlasov and BGK models.The finite difference scheme has better c...In this paper,we propose a new conservative high-order semi-Lagrangian finite difference(SLFD)method to solve linear advection equation and the nonlinear Vlasov and BGK models.The finite difference scheme has better computational flexibility by working with point values,especially when working with high-dimensional problems in an operator splitting setting.The reconstruction procedure in the proposed SLFD scheme is motivated from the SL finite volume scheme.In particular,we define a new sliding average function,whose cell averages agree with point values of the underlying function.By developing the SL finite volume scheme for the sliding average function,we derive the proposed SLFD scheme,which is high-order accurate,mass conservative and unconditionally stable for linear problems.The performance of the scheme is showcased by linear transport applications,as well as the nonlinear Vlasov-Poisson and BGK models.Furthermore,we apply the Fourier stability analysis to a fully discrete SLFD scheme coupled with diagonally implicit Runge-Kutta(DIRK)method when applied to a stiff two-velocity hyperbolic relaxation system.Numerical stability and asymptotic accuracy properties of DIRK methods are discussed in theoretical and computational aspects.展开更多
In this paper,we present a semi-Lagrangian(SL)method based on a non-polynomial function space for solving the Vlasov equation.We fnd that a non-polynomial function based scheme is suitable to the specifcs of the targe...In this paper,we present a semi-Lagrangian(SL)method based on a non-polynomial function space for solving the Vlasov equation.We fnd that a non-polynomial function based scheme is suitable to the specifcs of the target problems.To address issues that arise in phase space models of plasma problems,we develop a weighted essentially non-oscillatory(WENO)scheme using trigonometric polynomials.In particular,the non-polynomial WENO method is able to achieve improved accuracy near sharp gradients or discontinuities.Moreover,to obtain a high-order of accuracy in not only space but also time,it is proposed to apply a high-order splitting scheme in time.We aim to introduce the entire SL algorithm with high-order splitting in time and high-order WENO reconstruction in space to solve the Vlasov-Poisson system.Some numerical experiments are presented to demonstrate robustness of the proposed method in having a high-order of convergence and in capturing non-smooth solutions.A key observation is that the method can capture phase structure that require twice the resolution with a polynomial based method.In 6D,this would represent a signifcant savings.展开更多
In this paper,we present a conservative semi-Lagrangian scheme designed for the numeri-cal solution of 3D hydrostatic free surface flows involving sediment transport on unstruc-tured Voronoi meshes.A high-order recons...In this paper,we present a conservative semi-Lagrangian scheme designed for the numeri-cal solution of 3D hydrostatic free surface flows involving sediment transport on unstruc-tured Voronoi meshes.A high-order reconstruction procedure is employed for obtaining a piecewise polynomial representation of the velocity field and sediment concentration within each control volume.This is subsequently exploited for the numerical integration of the Lagrangian trajectories needed for the discretization of the nonlinear convective and viscous terms.The presented method is fully conservative by construction,since the transported quantity or the vector field is integrated for each cell over the deformed vol-ume obtained at the foot of the characteristics that arises from all the vertexes defining the computational element.The semi-Lagrangian approach allows the numerical scheme to be unconditionally stable for what concerns the advection part of the governing equations.Furthermore,a semi-implicit discretization permits to relax the time step restriction due to the acoustic impedance,hence yielding a stability condition which depends only on the explicit discretization of the viscous terms.A decoupled approach is then employed for the hydrostatic fluid solver and the transport of suspended sediment,which is assumed to be passive.The accuracy and the robustness of the resulting conservative semi-Lagrangian scheme are assessed through a suite of test cases and compared against the analytical solu-tion whenever is known.The new numerical scheme can reach up to fourth order of accu-racy on general orthogonal meshes composed by Voronoi polygons.展开更多
The semi-Lagrangian advection scheme is implemented on a new quasi-uniform overset (Yin-Yang) grid on the sphere. The Yin-Yang grid is a newly developed grid system in spherical geometry with two perpendicularly-ori...The semi-Lagrangian advection scheme is implemented on a new quasi-uniform overset (Yin-Yang) grid on the sphere. The Yin-Yang grid is a newly developed grid system in spherical geometry with two perpendicularly-oriented latitude-longitude grid components (called Yin and Yang respectively) that overlapp each other, and this effectively avoids the coordinate singularity and the grid convergence near the poles. In this overset grid, the way of transferring data between the Yin and Yang components is the key to maintaining the accuracy and robustness in numerical solutions. A numerical interpolation for boundary data exchange, which maintains the accuracy of the original advection scheme and is computationally efficient, is given in this paper. A standard test of the solid-body advection proposed by Williamson is carried out on the Yin-Yang grid. Numerical results show that the quasi-uniform Yin-Yang grid can get around the problems near the poles, and the numerical accuracy in the original semi-Lagrangian scheme is effectively maintained in the Yin-Yang grid.展开更多
ABSTRACT The Global/Regional Assimilation and PrEdiction System (GRAPES) is the newgeneration numerical weather predic- tion (NWP) system developed by the China Meteorological Administration. It is a fully compre...ABSTRACT The Global/Regional Assimilation and PrEdiction System (GRAPES) is the newgeneration numerical weather predic- tion (NWP) system developed by the China Meteorological Administration. It is a fully compressible non-hydrostatical global/regional unified model that uses a traditional semi-Lagrangian advection scheme with cubic Lagrangian interpola tion (referred to as the SL_CL scheme). The SL_CL scheme has been used in many operational NWP models, but there are still some deficiencies, such as the damping effects due to the interpolation and the relatively low accuracy. Based on Reich's semi-Lagrangian advection scheme (referred to as the R2007 scheme), the Re_R2007 scheme that uses the low- and high-order B-spline function for interpolation at the departure point, is developed in this paper. One- and two-dimensional idealized tests in the rectangular coordinate system with uniform grid cells were conducted to compare the Re..R2007 scheme and the SL_CL scheme. The numerical results showed that: (1) the damping effects were remarkably reduced with the Re_R2007 scheme; and (2) the normalized errors of the Re_R2007 scheme were about 7.5 and 3 times smaller than those of the SL_CL scheme in one- and two-dimensional tests, respectively, indicating the higher accuracy of the Re..R2007 scheme. Furthermore, two solid-body rotation tests were conducted in the latitude-longitude spherical coordinate system with non uniform grid cells, which also verified the Re_R2007 scheme's advantages. Finally, in comparison with other global advection schemes, the Re_R2007 scheme was competitive in terms of accuracy and flow independence. An encouraging possibility for the application of the Re_R2007 scheme to the GRAPES model is provided.展开更多
A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with...A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion, in comparison with other conventional schemes, hnportantly, FFSL can automatically maintain the positive definition of the transported tracers, which was an underlying problem in the previous spectral composite method (SCM). To comprehensively investigate the impact of FFSL on GCM results, we conducted sensitive experiments. Three main improvements resulted: first, rainfall simulation in both distribution and intensity was notably improved, which led to an improvement in precipitation frequency. Second, the dry bias in the lower troposphere was significantly reduced compared with SCM simulations. Third, according to the Taylor diagram, the FFSL scheme yields simulations that are superior to those using the SCM: a higher correlation between model output and observation data was achieved with the FFSL scheme, especially for humidity in lower troposphere. However, the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme. This bias led to an over-simulation of precipitable water in comparison with reanalysis data. Possible explanations, as well as solutions, are discussed herein.展开更多
The variational data assimilation scheme (VAR) is applied to investigating the advective effect and the evolution of the control variables in time splitting semi-Lagrangian framework. Two variational algorithms are us...The variational data assimilation scheme (VAR) is applied to investigating the advective effect and the evolution of the control variables in time splitting semi-Lagrangian framework. Two variational algorithms are used. One is the conjugate code method-direct approach, and another is the numerical backward integration of analytical adjoint equation—indirect approach. Theoretical derivation and sensitivity tests are conducted in order to verify the consistency and inconsistency of the two algorithms under the semi-Lagrangian framework. On the other hand, the sensitivity of the perfect and imperfect initial condition is also tested in both direct and indirect approaches. Our research has shown that the two algorithms are not only identical in theory, but also identical in numerical calculation. Furthermore, the algorithms of the indirect approach are much more feasible and efficient than that of the direct one when both are employed in the semi-Lagrangian framework. Taking advantage of semi-Lagrangian framework, one purpose of this paper is to illustrate when the variational assimilation algorithm is concerned in the computational method of the backward integration, the algorithm is extremely facilitated. Such simplicity in indirect approach should be meaningful for the VAR design in passive model. Indeed, if one can successfully split the diabatic and adiabatic process, the algorithms represented in this paper might be easily used in a more general vision of atmospheric model.展开更多
Transport problems arise across diverse fields of science and engineering.Semi-Lagran-gian(SL)discontinuous Galerkin(DG)methods are a class of high-order deterministic transport solvers that enjoy advantages of both t...Transport problems arise across diverse fields of science and engineering.Semi-Lagran-gian(SL)discontinuous Galerkin(DG)methods are a class of high-order deterministic transport solvers that enjoy advantages of both the SL approach and the DG spatial discre-tization.In this paper,we review existing SLDG methods to date and compare numerically their performance.In particular,we make a comparison between the splitting and non-splitting SLDG methods for multi-dimensional transport simulations.Through extensive numerical results,we offer a practical guide for choosing optimal SLDG solvers for linear and nonlinear transport simulations.展开更多
A new non-interpolating semi-Lagrangian scheme has been proposed, which can eliminate any interpolation,and consequently numerical smoothing of forecast fields. Here the new scheme is applied to KdV equation and its p...A new non-interpolating semi-Lagrangian scheme has been proposed, which can eliminate any interpolation,and consequently numerical smoothing of forecast fields. Here the new scheme is applied to KdV equation and its performance is assessed by comparing the numerical results with those produced by Ritchie's scheme (1986).The comparison shows that the non-interpolating semi-Lagrangian scheme appears to have efficiency advantages.展开更多
The semi-Lagrangian relaxation (SLR), a new exactmethod for combinatorial optimization problems with equality constraints,is applied to the quadratic assignment problem (QAP).A dual ascent algorithm with finite co...The semi-Lagrangian relaxation (SLR), a new exactmethod for combinatorial optimization problems with equality constraints,is applied to the quadratic assignment problem (QAP).A dual ascent algorithm with finite convergence is developed forsolving the semi-Lagrangian dual problem associated to the QAP.We perform computational experiments on 30 moderately difficultQAP instances by using the mixed integer programming solvers,Cplex, and SLR+Cplex, respectively. The numerical results notonly further illustrate that the SLR and the developed dual ascentalgorithm can be used to solve the QAP reasonably, but also disclosean interesting fact: comparing with solving the unreducedproblem, the reduced oracle problem cannot be always effectivelysolved by using Cplex in terms of the CPU time.展开更多
A positivity-preserving conservative semi-Lagrangian transport model by multi-moment finite volume method has been developed on the cubed-sphere grid.Two kinds of moments(i.e.,point values(PV moment) at cell interface...A positivity-preserving conservative semi-Lagrangian transport model by multi-moment finite volume method has been developed on the cubed-sphere grid.Two kinds of moments(i.e.,point values(PV moment) at cell interfaces and volume integrated average(VIA moment) value) are defined within a single cell.The PV moment is updated by a conventional semi-Lagrangian method,while the VIA moment is cast by the flux form formulation to assure the exact numerical conservation.Different from the spatial approximation used in the CSL2(conservative semi-Lagrangian scheme with second order polynomial function) scheme,a monotonic rational function which can effectively remove non-physical oscillations is reconstructed within a single cell by the PV moments and VIA moment.To achieve exactly positive-definite preserving,two kinds of corrections are made on the original conservative semi-Lagrangian with rational function(CSLR)scheme.The resulting scheme is inherently conservative,non-negative,and allows a Courant number larger than one.Moreover,the spatial reconstruction can be performed within a single cell,which is very efficient and economical for practical implementation.In addition,a dimension-splitting approach coupled with multi-moment finite volume scheme is adopted on cubed-sphere geometry,which benefitsthe implementation of the 1 D CSLR solver with large Courant number.The proposed model is evaluated by several widely used benchmark tests on cubed-sphere geometry.Numerical results show that the proposed transport model can effectively remove nonphysical oscillations and preserve the numerical nonnegativity,and it has the potential to transport the tracers accurately in a real atmospheric model.展开更多
The paper is devised to propose finite volume semi-Lagrange scheme for approximating linear and nonlinear hyperbolic conservation laws. Based on the idea of semi-Lagrangian scheme, we transform the integration of flux...The paper is devised to propose finite volume semi-Lagrange scheme for approximating linear and nonlinear hyperbolic conservation laws. Based on the idea of semi-Lagrangian scheme, we transform the integration of flux in time into the integration in space. Compared with the traditional semi-Lagrange scheme, the scheme devised here tries to directly evaluate the average fluxes along cell edges. It is this difference that makes the scheme in this paper simple to implement and easily extend to nonlinear cases. The procedure of evaluation of the average fluxes only depends on the high-order spatial interpolation. Hence the scheme can be implemented as long as the spatial interpolation is available, and no additional temporal discretization is needed. In this paper, the high-order spatial discretization is chosen to be the classical 5th-order weighted essentially non-oscillatory spatial interpolation. In the end, 1D and 2D numerical results show that this method is rather robust. In addition, to exhibit the numerical resolution and efficiency of the proposed scheme, the numerical solutions of the classical 5th-order WENO scheme combined with the 3rd-order Runge-Kutta temporal discretization (WENOJS) are chosen as the reference. We find that the scheme proposed in the paper generates comparable solutions with that of WENOJS, but with less CPU time.展开更多
In this work, we apply a semi-Lagrangian spectral method for the Vlasov-Poisson system, previously designed for periodic Fourier discretizations, by implementing Legendre polynomials and Hermite functions in the appro...In this work, we apply a semi-Lagrangian spectral method for the Vlasov-Poisson system, previously designed for periodic Fourier discretizations, by implementing Legendre polynomials and Hermite functions in the approximation of the distribution function with respect to the velocity variable. We discuss second-order accurate-in-time schemes, obtained by coupling spectral techniques in the space-velocity domain with a BDF timestepping scheme. The resulting method possesses good conservation properties, which have been assessed by a series of numerical tests conducted on some standard benchmark problems including the two-stream instability and the Landau damping test cases. In the Hermite case, we also investigate the numerical behavior in dependence of a scaling parameter in the Gaussian weight. Confirming previous results from the literature, our experiments for different representative values of this parameter, indicate that a proper choice may significantly impact on accuracy, thus suggesting that suitable strategies should be developed to automatically update the parameter during the time-advancing procedure.展开更多
In this paper, we propose a numerical method based on semi-Lagrangian approach for solving quasi-geostrophic (QG) equations on a sphere. Using potential vorticity and stream-function as prognostic variables, two-...In this paper, we propose a numerical method based on semi-Lagrangian approach for solving quasi-geostrophic (QG) equations on a sphere. Using potential vorticity and stream-function as prognostic variables, two-order centered difference is suggested on the latitude-longitude grid. In our proposed numerical scheme, advection terms are expressed in a Lagrangian frame of reference to circumvent the CFL restriction. The pole singularity associated with the latitude-longitude grid is eliminated by a smoothing technique for the initial flow. Error analysis is provided for the numerical scheme.展开更多
The paper is devised to combine the approximated semi-Lagrange weighted essentially non-oscillatory scheme and flux vector splitting. The approximated finite volume semi-Lagrange that is weighted essentially non-oscil...The paper is devised to combine the approximated semi-Lagrange weighted essentially non-oscillatory scheme and flux vector splitting. The approximated finite volume semi-Lagrange that is weighted essentially non-oscillatory scheme with Roe flux had been proposed. The methods using Roe speed to construct the flux probably generates entropy-violating solutions. More seriously, the methods maybe perform numerical instability in two-dimensional cases. A robust and simply remedy is to use a global flux splitting to substitute Roe flux. The combination is tested by several numerical examples. In addition, the comparisons of computing time and resolution between the classical weighted essentially non-oscillatory scheme (WENOJS-LF) and the semi-Lagrange weighted essentially non-oscillatory scheme (WENOEL-LF) which is presented (both combining with the flux vector splitting).展开更多
A partial Runge-Kutta Discontinuous Galerkin(RKDG)method which preserves the exactly divergence-free property of the magnetic field is proposed in this paper to solve the two-dimensional ideal compressible magnetohydr...A partial Runge-Kutta Discontinuous Galerkin(RKDG)method which preserves the exactly divergence-free property of the magnetic field is proposed in this paper to solve the two-dimensional ideal compressible magnetohydrodynamics(MHD)equations written in semi-Lagrangian formulation on moving quadrilateral meshes.In this method,the fluid part of the ideal MHD equations along with zcomponent of the magnetic induction equation is discretized by the RKDG method as our previous paper[47].The numerical magnetic field in the remaining two directions(i.e.,x and y)are constructed by using the magnetic flux-freezing principle which is the integral form of the magnetic induction equation of the ideal MHD.Since the divergence of the magnetic field in 2D is independent of its z-direction component,an exactly divergence-free numerical magnetic field can be obtained by this treatment.We propose a new nodal solver to improve the calculation accuracy of velocities of the moving meshes.A limiter is presented for the numerical solution of the fluid part of the MHD equations and it can avoid calculating the complex eigen-system of the MHD equations.Some numerical examples are presented to demonstrate the accuracy,non-oscillatory property and preservation of the exactly divergence-free property of our method.展开更多
The Global/Regional Assimilation and PrEdiction System(GRAPES) is a newly developed global non-hydrostatic numerical prediction model,which will become the next generation medium-range opera-tional model at China Mete...The Global/Regional Assimilation and PrEdiction System(GRAPES) is a newly developed global non-hydrostatic numerical prediction model,which will become the next generation medium-range opera-tional model at China Meteorological Administration(CMA).The dynamic framework of GRAPES is featuring with fully compressible equations,nonhydrostatic or hydrostatic optionally,two-level time semi-Lagrangian and semi-implicit time integration,Charney-Phillips vertical staggering,and complex three-dimensional pre-conditioned Helmholtz solver,etc.Concerning the singularity of horizontal momentum equations at the poles,the polar discretization schemes are described,which include adoption of Arakawa C horizontal grid with ν at poles,incorporation of polar filtering to maintain the computational stability,the correction to Helmholtz equation near the poles,as well as the treatment of semi-Lagrangian interpolation to improve the departure point accuracy,etc.The balanced flow tests validate the rationality of the treatment of semi-Lagrangian departure point calculation and the polar discretization during long time integration.Held and Suarez tests show that the conservation proper-ties of GRAPES model are quite good.展开更多
In this paper,we propose a new conservative semi-Lagrangian(SL)finite difference(FD)WENO scheme for linear advection equations,which can serve as a base scheme for the Vlasov equation by Strang splitting[4].The recons...In this paper,we propose a new conservative semi-Lagrangian(SL)finite difference(FD)WENO scheme for linear advection equations,which can serve as a base scheme for the Vlasov equation by Strang splitting[4].The reconstruction procedure in the proposed SL FD scheme is the same as the one used in the SL finite volume(FV)WENO scheme[3].However,instead of inputting cell averages and approximate the integral form of the equation in a FV scheme,we input point values and approximate the differential form of equation in a FD spirit,yet retaining very high order(fifth order in our experiment)spatial accuracy.The advantage of using point values,rather than cell averages,is to avoid the second order spatial error,due to the shearing in velocity(v)and electrical field(E)over a cell when performing the Strang splitting to the Vlasov equation.As a result,the proposed scheme has very high spatial accuracy,compared with second order spatial accuracy for Strang split SL FV scheme for solving the Vlasov-Poisson(VP)system.We perform numerical experiments on linear advection,rigid body rotation problem;and on the Landau damping and two-stream instabilities by solving the VP system.For comparison,we also apply(1)the conservative SL FD WENO scheme,proposed in[22]for incompressible advection problem,(2)the conservative SL FD WENO scheme proposed in[21]and(3)the non-conservative version of the SL FD WENO scheme in[3]to the same test problems.The performances of different schemes are compared by the error table,solution resolution of sharp interface,and by tracking the conservation of physical norms,energies and entropies,which should be physically preserved.展开更多
基金Research of Linjin Li and Jingmei Qiu is supported by the NSF grant NSF-DMS-1818924the Air Force Office of Scientific Computing FA9550-18-1-0257 and the University of Delawarethe Italian Ministry of Instruction,University and Research(MIUR)to support this research with funds coming from the PRIN Project 2017,No.2017KKJP4X and ITN-ETN Horizon 2020 Project,Project Reference 642768.
文摘In this paper,we propose a new conservative high-order semi-Lagrangian finite difference(SLFD)method to solve linear advection equation and the nonlinear Vlasov and BGK models.The finite difference scheme has better computational flexibility by working with point values,especially when working with high-dimensional problems in an operator splitting setting.The reconstruction procedure in the proposed SLFD scheme is motivated from the SL finite volume scheme.In particular,we define a new sliding average function,whose cell averages agree with point values of the underlying function.By developing the SL finite volume scheme for the sliding average function,we derive the proposed SLFD scheme,which is high-order accurate,mass conservative and unconditionally stable for linear problems.The performance of the scheme is showcased by linear transport applications,as well as the nonlinear Vlasov-Poisson and BGK models.Furthermore,we apply the Fourier stability analysis to a fully discrete SLFD scheme coupled with diagonally implicit Runge-Kutta(DIRK)method when applied to a stiff two-velocity hyperbolic relaxation system.Numerical stability and asymptotic accuracy properties of DIRK methods are discussed in theoretical and computational aspects.
基金AFOSR and NSF for their support of this work under grants FA9550-19-1-0281 and FA9550-17-1-0394 and NSF grant DMS 191218。
文摘In this paper,we present a semi-Lagrangian(SL)method based on a non-polynomial function space for solving the Vlasov equation.We fnd that a non-polynomial function based scheme is suitable to the specifcs of the target problems.To address issues that arise in phase space models of plasma problems,we develop a weighted essentially non-oscillatory(WENO)scheme using trigonometric polynomials.In particular,the non-polynomial WENO method is able to achieve improved accuracy near sharp gradients or discontinuities.Moreover,to obtain a high-order of accuracy in not only space but also time,it is proposed to apply a high-order splitting scheme in time.We aim to introduce the entire SL algorithm with high-order splitting in time and high-order WENO reconstruction in space to solve the Vlasov-Poisson system.Some numerical experiments are presented to demonstrate robustness of the proposed method in having a high-order of convergence and in capturing non-smooth solutions.A key observation is that the method can capture phase structure that require twice the resolution with a polynomial based method.In 6D,this would represent a signifcant savings.
基金support of MIUR-PRIN Project 2017,No.2017KKJP4X“Innovative numerical methods for evolutionary partial differential equations and applications”.
文摘In this paper,we present a conservative semi-Lagrangian scheme designed for the numeri-cal solution of 3D hydrostatic free surface flows involving sediment transport on unstruc-tured Voronoi meshes.A high-order reconstruction procedure is employed for obtaining a piecewise polynomial representation of the velocity field and sediment concentration within each control volume.This is subsequently exploited for the numerical integration of the Lagrangian trajectories needed for the discretization of the nonlinear convective and viscous terms.The presented method is fully conservative by construction,since the transported quantity or the vector field is integrated for each cell over the deformed vol-ume obtained at the foot of the characteristics that arises from all the vertexes defining the computational element.The semi-Lagrangian approach allows the numerical scheme to be unconditionally stable for what concerns the advection part of the governing equations.Furthermore,a semi-implicit discretization permits to relax the time step restriction due to the acoustic impedance,hence yielding a stability condition which depends only on the explicit discretization of the viscous terms.A decoupled approach is then employed for the hydrostatic fluid solver and the transport of suspended sediment,which is assumed to be passive.The accuracy and the robustness of the resulting conservative semi-Lagrangian scheme are assessed through a suite of test cases and compared against the analytical solu-tion whenever is known.The new numerical scheme can reach up to fourth order of accu-racy on general orthogonal meshes composed by Voronoi polygons.
基金This paper is sponsored by the National Natural Science Foundation of China (No. 40575050) the National Key Program for Developing Basic Reseach ("973") (No. 2004CB418306).
文摘The semi-Lagrangian advection scheme is implemented on a new quasi-uniform overset (Yin-Yang) grid on the sphere. The Yin-Yang grid is a newly developed grid system in spherical geometry with two perpendicularly-oriented latitude-longitude grid components (called Yin and Yang respectively) that overlapp each other, and this effectively avoids the coordinate singularity and the grid convergence near the poles. In this overset grid, the way of transferring data between the Yin and Yang components is the key to maintaining the accuracy and robustness in numerical solutions. A numerical interpolation for boundary data exchange, which maintains the accuracy of the original advection scheme and is computationally efficient, is given in this paper. A standard test of the solid-body advection proposed by Williamson is carried out on the Yin-Yang grid. Numerical results show that the quasi-uniform Yin-Yang grid can get around the problems near the poles, and the numerical accuracy in the original semi-Lagrangian scheme is effectively maintained in the Yin-Yang grid.
基金jointly sponsored by the Key Project of the Chinese National Programs for Fundamental Research and Development ("973 Program" Grant No.2013CB430106)+1 种基金the Key Project of the Chinese National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (Grant No.2012BAC22B01)the National Natural Science Foundation of China ( Grant No.41375108)
文摘ABSTRACT The Global/Regional Assimilation and PrEdiction System (GRAPES) is the newgeneration numerical weather predic- tion (NWP) system developed by the China Meteorological Administration. It is a fully compressible non-hydrostatical global/regional unified model that uses a traditional semi-Lagrangian advection scheme with cubic Lagrangian interpola tion (referred to as the SL_CL scheme). The SL_CL scheme has been used in many operational NWP models, but there are still some deficiencies, such as the damping effects due to the interpolation and the relatively low accuracy. Based on Reich's semi-Lagrangian advection scheme (referred to as the R2007 scheme), the Re_R2007 scheme that uses the low- and high-order B-spline function for interpolation at the departure point, is developed in this paper. One- and two-dimensional idealized tests in the rectangular coordinate system with uniform grid cells were conducted to compare the Re..R2007 scheme and the SL_CL scheme. The numerical results showed that: (1) the damping effects were remarkably reduced with the Re_R2007 scheme; and (2) the normalized errors of the Re_R2007 scheme were about 7.5 and 3 times smaller than those of the SL_CL scheme in one- and two-dimensional tests, respectively, indicating the higher accuracy of the Re..R2007 scheme. Furthermore, two solid-body rotation tests were conducted in the latitude-longitude spherical coordinate system with non uniform grid cells, which also verified the Re_R2007 scheme's advantages. Finally, in comparison with other global advection schemes, the Re_R2007 scheme was competitive in terms of accuracy and flow independence. An encouraging possibility for the application of the Re_R2007 scheme to the GRAPES model is provided.
基金supported by the Chinese Academy of Science Strategic Priority Research Program (Grant No. XDA05110303)"973" Program (Grant Nos. 2010CB950403,2012CB417203,and 2013CB955803)+1 种基金"863" Program(Grant No. 2010AA012305)the National Natural Science Foundation of China (Grant Nos. 40925015,40875034,and 41023002)
文摘A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion, in comparison with other conventional schemes, hnportantly, FFSL can automatically maintain the positive definition of the transported tracers, which was an underlying problem in the previous spectral composite method (SCM). To comprehensively investigate the impact of FFSL on GCM results, we conducted sensitive experiments. Three main improvements resulted: first, rainfall simulation in both distribution and intensity was notably improved, which led to an improvement in precipitation frequency. Second, the dry bias in the lower troposphere was significantly reduced compared with SCM simulations. Third, according to the Taylor diagram, the FFSL scheme yields simulations that are superior to those using the SCM: a higher correlation between model output and observation data was achieved with the FFSL scheme, especially for humidity in lower troposphere. However, the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme. This bias led to an over-simulation of precipitable water in comparison with reanalysis data. Possible explanations, as well as solutions, are discussed herein.
文摘The variational data assimilation scheme (VAR) is applied to investigating the advective effect and the evolution of the control variables in time splitting semi-Lagrangian framework. Two variational algorithms are used. One is the conjugate code method-direct approach, and another is the numerical backward integration of analytical adjoint equation—indirect approach. Theoretical derivation and sensitivity tests are conducted in order to verify the consistency and inconsistency of the two algorithms under the semi-Lagrangian framework. On the other hand, the sensitivity of the perfect and imperfect initial condition is also tested in both direct and indirect approaches. Our research has shown that the two algorithms are not only identical in theory, but also identical in numerical calculation. Furthermore, the algorithms of the indirect approach are much more feasible and efficient than that of the direct one when both are employed in the semi-Lagrangian framework. Taking advantage of semi-Lagrangian framework, one purpose of this paper is to illustrate when the variational assimilation algorithm is concerned in the computational method of the backward integration, the algorithm is extremely facilitated. Such simplicity in indirect approach should be meaningful for the VAR design in passive model. Indeed, if one can successfully split the diabatic and adiabatic process, the algorithms represented in this paper might be easily used in a more general vision of atmospheric model.
基金W.Guo:Research is supported by NSF grant NSF-DMS-1830838J.-M.Qiu:Research is supported by NSF grant NSF-DMS-1522777 and NSF-DMS-1818924Air Force Office of Scientific Computing FA9550-18-1-0257.
文摘Transport problems arise across diverse fields of science and engineering.Semi-Lagran-gian(SL)discontinuous Galerkin(DG)methods are a class of high-order deterministic transport solvers that enjoy advantages of both the SL approach and the DG spatial discre-tization.In this paper,we review existing SLDG methods to date and compare numerically their performance.In particular,we make a comparison between the splitting and non-splitting SLDG methods for multi-dimensional transport simulations.Through extensive numerical results,we offer a practical guide for choosing optimal SLDG solvers for linear and nonlinear transport simulations.
文摘A new non-interpolating semi-Lagrangian scheme has been proposed, which can eliminate any interpolation,and consequently numerical smoothing of forecast fields. Here the new scheme is applied to KdV equation and its performance is assessed by comparing the numerical results with those produced by Ritchie's scheme (1986).The comparison shows that the non-interpolating semi-Lagrangian scheme appears to have efficiency advantages.
基金supported by the National Natural Science Foundation of China(71401106)the Innovation Program of Shanghai Municipal Education Commission(14YZ090)+4 种基金the Shanghai Natural Science Foundation(14ZR1418700)the Shanghai First-class Academic Discipline Project(S1201YLXK)the Hujiang Foundation of China(A14006)the grant S2009/esp-1594 from the Comunidad de Madrid(Spain)the grant MTM2012-36163-C06-06 from the Spanish government
文摘The semi-Lagrangian relaxation (SLR), a new exactmethod for combinatorial optimization problems with equality constraints,is applied to the quadratic assignment problem (QAP).A dual ascent algorithm with finite convergence is developed forsolving the semi-Lagrangian dual problem associated to the QAP.We perform computational experiments on 30 moderately difficultQAP instances by using the mixed integer programming solvers,Cplex, and SLR+Cplex, respectively. The numerical results notonly further illustrate that the SLR and the developed dual ascentalgorithm can be used to solve the QAP reasonably, but also disclosean interesting fact: comparing with solving the unreducedproblem, the reduced oracle problem cannot be always effectivelysolved by using Cplex in terms of the CPU time.
基金supported by the National Key Research and Development Program of China (Grant Nos.2017YFC1501901 and 2017YFA0603901)the Beijing Natural Science Foundation (Grant No.JQ18001)。
文摘A positivity-preserving conservative semi-Lagrangian transport model by multi-moment finite volume method has been developed on the cubed-sphere grid.Two kinds of moments(i.e.,point values(PV moment) at cell interfaces and volume integrated average(VIA moment) value) are defined within a single cell.The PV moment is updated by a conventional semi-Lagrangian method,while the VIA moment is cast by the flux form formulation to assure the exact numerical conservation.Different from the spatial approximation used in the CSL2(conservative semi-Lagrangian scheme with second order polynomial function) scheme,a monotonic rational function which can effectively remove non-physical oscillations is reconstructed within a single cell by the PV moments and VIA moment.To achieve exactly positive-definite preserving,two kinds of corrections are made on the original conservative semi-Lagrangian with rational function(CSLR)scheme.The resulting scheme is inherently conservative,non-negative,and allows a Courant number larger than one.Moreover,the spatial reconstruction can be performed within a single cell,which is very efficient and economical for practical implementation.In addition,a dimension-splitting approach coupled with multi-moment finite volume scheme is adopted on cubed-sphere geometry,which benefitsthe implementation of the 1 D CSLR solver with large Courant number.The proposed model is evaluated by several widely used benchmark tests on cubed-sphere geometry.Numerical results show that the proposed transport model can effectively remove nonphysical oscillations and preserve the numerical nonnegativity,and it has the potential to transport the tracers accurately in a real atmospheric model.
文摘The paper is devised to propose finite volume semi-Lagrange scheme for approximating linear and nonlinear hyperbolic conservation laws. Based on the idea of semi-Lagrangian scheme, we transform the integration of flux in time into the integration in space. Compared with the traditional semi-Lagrange scheme, the scheme devised here tries to directly evaluate the average fluxes along cell edges. It is this difference that makes the scheme in this paper simple to implement and easily extend to nonlinear cases. The procedure of evaluation of the average fluxes only depends on the high-order spatial interpolation. Hence the scheme can be implemented as long as the spatial interpolation is available, and no additional temporal discretization is needed. In this paper, the high-order spatial discretization is chosen to be the classical 5th-order weighted essentially non-oscillatory spatial interpolation. In the end, 1D and 2D numerical results show that this method is rather robust. In addition, to exhibit the numerical resolution and efficiency of the proposed scheme, the numerical solutions of the classical 5th-order WENO scheme combined with the 3rd-order Runge-Kutta temporal discretization (WENOJS) are chosen as the reference. We find that the scheme proposed in the paper generates comparable solutions with that of WENOJS, but with less CPU time.
文摘In this work, we apply a semi-Lagrangian spectral method for the Vlasov-Poisson system, previously designed for periodic Fourier discretizations, by implementing Legendre polynomials and Hermite functions in the approximation of the distribution function with respect to the velocity variable. We discuss second-order accurate-in-time schemes, obtained by coupling spectral techniques in the space-velocity domain with a BDF timestepping scheme. The resulting method possesses good conservation properties, which have been assessed by a series of numerical tests conducted on some standard benchmark problems including the two-stream instability and the Landau damping test cases. In the Hermite case, we also investigate the numerical behavior in dependence of a scaling parameter in the Gaussian weight. Confirming previous results from the literature, our experiments for different representative values of this parameter, indicate that a proper choice may significantly impact on accuracy, thus suggesting that suitable strategies should be developed to automatically update the parameter during the time-advancing procedure.
文摘In this paper, we propose a numerical method based on semi-Lagrangian approach for solving quasi-geostrophic (QG) equations on a sphere. Using potential vorticity and stream-function as prognostic variables, two-order centered difference is suggested on the latitude-longitude grid. In our proposed numerical scheme, advection terms are expressed in a Lagrangian frame of reference to circumvent the CFL restriction. The pole singularity associated with the latitude-longitude grid is eliminated by a smoothing technique for the initial flow. Error analysis is provided for the numerical scheme.
文摘The paper is devised to combine the approximated semi-Lagrange weighted essentially non-oscillatory scheme and flux vector splitting. The approximated finite volume semi-Lagrange that is weighted essentially non-oscillatory scheme with Roe flux had been proposed. The methods using Roe speed to construct the flux probably generates entropy-violating solutions. More seriously, the methods maybe perform numerical instability in two-dimensional cases. A robust and simply remedy is to use a global flux splitting to substitute Roe flux. The combination is tested by several numerical examples. In addition, the comparisons of computing time and resolution between the classical weighted essentially non-oscillatory scheme (WENOJS-LF) and the semi-Lagrange weighted essentially non-oscillatory scheme (WENOEL-LF) which is presented (both combining with the flux vector splitting).
基金supported by National Natural Science Foundation of China(Nos.12071046,11671049,91330107,11571002 and 11702028)China Postdoctoral Science Foundation(No.2020TQ0013).
文摘A partial Runge-Kutta Discontinuous Galerkin(RKDG)method which preserves the exactly divergence-free property of the magnetic field is proposed in this paper to solve the two-dimensional ideal compressible magnetohydrodynamics(MHD)equations written in semi-Lagrangian formulation on moving quadrilateral meshes.In this method,the fluid part of the ideal MHD equations along with zcomponent of the magnetic induction equation is discretized by the RKDG method as our previous paper[47].The numerical magnetic field in the remaining two directions(i.e.,x and y)are constructed by using the magnetic flux-freezing principle which is the integral form of the magnetic induction equation of the ideal MHD.Since the divergence of the magnetic field in 2D is independent of its z-direction component,an exactly divergence-free numerical magnetic field can be obtained by this treatment.We propose a new nodal solver to improve the calculation accuracy of velocities of the moving meshes.A limiter is presented for the numerical solution of the fluid part of the MHD equations and it can avoid calculating the complex eigen-system of the MHD equations.Some numerical examples are presented to demonstrate the accuracy,non-oscillatory property and preservation of the exactly divergence-free property of our method.
基金Supported by the Ministry of Science and Technology of China (Grant Nos 2006BAC02B01 and 2006BAC03B03)the National High Technology Research and Development Program of China (863 Program) (Grant No 2006AA01A123)
文摘The Global/Regional Assimilation and PrEdiction System(GRAPES) is a newly developed global non-hydrostatic numerical prediction model,which will become the next generation medium-range opera-tional model at China Meteorological Administration(CMA).The dynamic framework of GRAPES is featuring with fully compressible equations,nonhydrostatic or hydrostatic optionally,two-level time semi-Lagrangian and semi-implicit time integration,Charney-Phillips vertical staggering,and complex three-dimensional pre-conditioned Helmholtz solver,etc.Concerning the singularity of horizontal momentum equations at the poles,the polar discretization schemes are described,which include adoption of Arakawa C horizontal grid with ν at poles,incorporation of polar filtering to maintain the computational stability,the correction to Helmholtz equation near the poles,as well as the treatment of semi-Lagrangian interpolation to improve the departure point accuracy,etc.The balanced flow tests validate the rationality of the treatment of semi-Lagrangian departure point calculation and the polar discretization during long time integration.Held and Suarez tests show that the conservation proper-ties of GRAPES model are quite good.
基金supported by AFOSR grant FA9550-09-1-0344 and NSF grant DMS-0914852supported by AFOSR grant FA9550-09-1-0126 and NSF grant DMS-0809086.
文摘In this paper,we propose a new conservative semi-Lagrangian(SL)finite difference(FD)WENO scheme for linear advection equations,which can serve as a base scheme for the Vlasov equation by Strang splitting[4].The reconstruction procedure in the proposed SL FD scheme is the same as the one used in the SL finite volume(FV)WENO scheme[3].However,instead of inputting cell averages and approximate the integral form of the equation in a FV scheme,we input point values and approximate the differential form of equation in a FD spirit,yet retaining very high order(fifth order in our experiment)spatial accuracy.The advantage of using point values,rather than cell averages,is to avoid the second order spatial error,due to the shearing in velocity(v)and electrical field(E)over a cell when performing the Strang splitting to the Vlasov equation.As a result,the proposed scheme has very high spatial accuracy,compared with second order spatial accuracy for Strang split SL FV scheme for solving the Vlasov-Poisson(VP)system.We perform numerical experiments on linear advection,rigid body rotation problem;and on the Landau damping and two-stream instabilities by solving the VP system.For comparison,we also apply(1)the conservative SL FD WENO scheme,proposed in[22]for incompressible advection problem,(2)the conservative SL FD WENO scheme proposed in[21]and(3)the non-conservative version of the SL FD WENO scheme in[3]to the same test problems.The performances of different schemes are compared by the error table,solution resolution of sharp interface,and by tracking the conservation of physical norms,energies and entropies,which should be physically preserved.