The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative r...The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative relationships for the variations of the inner boundary and propped fractures have not been determined and incorporated in the semi-analytical models for the pressure and rate transient analysis.This work focuses on describing the variations of the inner boundary and propped fractures and capturing the typical characteristics from the pressure transient curves.A generalized semi-analytical model was developed to characterize the dynamic behavior of the inner boundary and propped fractures under long-term production conditions.The pressure-dependent length shrinkage coefficients,which quantify the length changes of the inner zone and propped fractures,are modified and incorporated into this multi-zone semi-analytical model.With simultaneous numerical iterations and numerical inversions in Laplace and real-time space,the transient solutions to pressure and rate behavior are determined in just a few seconds.The dynamic behavior of the inner boundary and propped fractures on transient pressure curves is divided into five periods:fracture bilinear flow(FR1),dynamic PFs flow(FR2),inner-area linear flow(FR3),dynamic inner boundary flow(FR4),and outer-area dominated linear flow(FR5).The early hump during FR2 period and a positive upward shift during FR4period are captured on the log-log pressure transient curves,reflecting the dynamic behavior of the inner boundary and propped fractures during the long-term production period.The transient pressure behavior will exhibit greater positive upward trend and the flow rate will be lower with the shrinkage of the inner boundary.The pressure derivative curve will be upward earlier as the inner boundary shrinks more rapidly.The lower permeability caused by the closure of un-propped fractures in the inner zone results in greater upward in pressure derivative curves.If the permeability loss for the dynamic behavior of the inner boundary caused by the closure of un-propped fractures is neglected,the flow rate will be overestimated in the later production period.展开更多
The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-e...The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.展开更多
准确计算户内变电站大型、复杂的噪声场分布,进而评价可采用降噪措施的减噪效果,是解决户内变电站噪声污染的关键问题。为此,综合声学有限元法(finite element method,FEM)求解复杂声场收敛性好及精度高的优点,及声学边界元法(boundary ...准确计算户内变电站大型、复杂的噪声场分布,进而评价可采用降噪措施的减噪效果,是解决户内变电站噪声污染的关键问题。为此,综合声学有限元法(finite element method,FEM)求解复杂声场收敛性好及精度高的优点,及声学边界元法(boundary element method,BEM)降维求解大型声场的优势,提出了一种基于声学FEM-BEM的户内变电站噪声场求解算法。首先,建立变电站内部声源声固耦合模型,采用声学FEM求解混响噪声作用下的声固耦合响应;然后,基于声学FEM-BEM耦合理论,求解内、外耦合边界处结构单元受声固耦合激励产生的位移及应力载荷;最后,根据声压及应力载荷激发的外场声波扩散模型,基于常规Gauss数值积分法,建立外部空间声域2维BEM声学积分方程,求解外部声场。该算法在湖南某110 kV户内变电站噪声场的求解分析中得到了成功应用,与实测值的相对误差为3.61%~4.87%。展开更多
碎屑流是我国山区最危险的地质灾害之一,山区桥墩常受到碎屑流冲击而开裂、倾斜甚至倒塌,给山区桥梁建设、运营带来严重的安全隐患。采用离散元方法(discrete element method,DEM)和有限元方法(finite element method,FEM)耦合的三维数...碎屑流是我国山区最危险的地质灾害之一,山区桥墩常受到碎屑流冲击而开裂、倾斜甚至倒塌,给山区桥梁建设、运营带来严重的安全隐患。采用离散元方法(discrete element method,DEM)和有限元方法(finite element method,FEM)耦合的三维数值模拟方法模拟了碎屑流对双柱式桥墩的冲击效应,并结合斜槽试验,验证了耦合方法的准确性,进一步分析了碎屑流冲击坡度、距离和体积密度对桥墩冲击力的影响规律。结果表明,最大冲击力与碎屑流冲击坡度、距离和体积密度分别呈幂函数(指数大于1)、幂函数(指数小于1)和线性正相关。冲击坡度、距离和体积密度对最大冲击力的敏感度值分别为3.012、0.202、0.804,在桥梁碎屑流灾害防治时需重视冲击坡度和体积密度的影响。将冲击力的数值模拟值与流体动力学模型预测值对比分析表明,流体动力学模型理论公式能较好地预测桥墩所受的最大冲击力,最大预测误差低于23.6%。相关研究结果可为山区桥梁碎屑流灾害防治与设计提供一定的参考依据。展开更多
Longitudinal cracks on the tunnel lining significantly influence the performance of tunnels in operation.In this study,we propose a semi-analytical method that provides a simple and effective way to calculate the inte...Longitudinal cracks on the tunnel lining significantly influence the performance of tunnels in operation.In this study,we propose a semi-analytical method that provides a simple and effective way to calculate the internal forces of tunnel linings with multiple cracks.The semi-analytical solution is obtained using structural analysis considering the flexural rigidity for the cracked longitudinal section of the tunnel lining.Then the proposed solution is verified numerically.Using the proposed method,the influences of the crack depth and the number of cracks on the bending moment and modified crack tip stress are investigated.With the increase in crack depth,the bending moment of lining scetion adjacent to the crack decreases,while the bending moment of lining scetion far away from the crack increases slightly.The more the number of cracks in a tunnel lining,the easier the new cracks initiated.展开更多
The calculation of frost heaving with ice lens formation is still not standard for construction projects using artificial ground freezing(AGF).In fine-grained material,ice lenses may initiate and lead to significant h...The calculation of frost heaving with ice lens formation is still not standard for construction projects using artificial ground freezing(AGF).In fine-grained material,ice lenses may initiate and lead to significant heaving at the ground surface,which should be considered in advance.However,the complex processes during ice lens formation are still not fully understood and difficult to capture in a simple approach.In the past,the semi-analytical approach of Konrad and Morgenstern used one soil constant,the“segregation potential(SP)”.It has been mainly and most successfully applied to the heave calculation of natural-induced soil freezing in cold regions.Its application to AGF has been so far unsuccessful.To solve this,a new semi-analytical approach is presented in this paper.It includes AGF conditions such as bottom-up freezing,temperature gradients to reach great freezing velocities,and a distinction between two freezing states.One is the freezing-up state until a certain frost body thickness is reached(thermal transient state),and the other is a holding phase where the frost body thickness is kept constant(thermal quasi-steady state).To test its ability,the results are applied to another freezing direction,the top-down freezing.The new approach is validated using two different frost-susceptible soils and,in total,50 frost heave tests.In the thermal transient region,where the SP is applicable,the two semi-analytical approaches are compared,showing improved performance of the current method by about 15%.展开更多
泥石流是我国西南山区常见的地质灾害。架空输电杆塔在泥石流的冲击下往往发生基础破坏甚至会造成杆塔倒塌。首先采用光滑粒子流体动力学(smoothed particle hydrodynamics,简称SPH)方法和有限元方法(finite element method,简称FEM)相...泥石流是我国西南山区常见的地质灾害。架空输电杆塔在泥石流的冲击下往往发生基础破坏甚至会造成杆塔倒塌。首先采用光滑粒子流体动力学(smoothed particle hydrodynamics,简称SPH)方法和有限元方法(finite element method,简称FEM)相耦合的三维数值方法模拟了泥石流对杆塔基础的冲击作用;在与相关模型试验结果验证的基础上,开展了不同泥石流密度、黏度系数及初始速度条件下对输电塔基础的冲击力作用的参数分析;研究结果表明:随着泥石流初始速度的增加,冲击力峰值会随之增大;前排基础的冲击力峰值均大于后排基础;泥石流冲击过程特性受到泥石流密度和黏度系数影响。与稀性泥石流相比:黏性泥石流冲击基础后,基础下游真空区相对要小;此外,将数值模拟结果与Kwan冲击力公式及铁二院推荐的冲击压力设计公式预测值进行对比分析可以发现:Kwan冲击力公式能较好地预测出基础所受泥石流冲击力的平均趋势,最大预测误差低于30%,铁二院公式预测的稀性和黏性泥石流的冲击压力平均偏低分别约17%和28%。相关研究结果有望为泥石流频发区域输电塔基础的设计和风险评估提供一定的参考依据。展开更多
针对飞机典型部位在遭到高速破片攻击后结构整体的战伤状态及破片的剩余行为开展数值模拟。应用LS-DYNA软件,结合有限单元方法(finite element method,FEM)和光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)两者的优势,建立...针对飞机典型部位在遭到高速破片攻击后结构整体的战伤状态及破片的剩余行为开展数值模拟。应用LS-DYNA软件,结合有限单元方法(finite element method,FEM)和光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)两者的优势,建立自适应的FEM-SPH耦合模拟方法,并构建2种飞机典型部位的计算模型,采用六面体网格局部细化方法实现了核心位置的精确模拟,并进行试验来验证数值模型;开展了一系列高速冲击战伤模拟,对比了不同工况下破片高速冲击结构后形成的碎片云和破口形貌,并对破片的剩余速度和质量进行分析,确定了破片在结构蒙皮上的临界跳飞角。结果表明:自适应FEM-SPH耦合算法的计算结果与试验结果吻合良好,能够对破片高速冲击战伤进行有效准确模拟;碎片云分布形状随破片速度增加变得狭长,冲击角度会改变碎片云和结构破口形状朝向;碎片云高度和扩散速度随破片速度或角度的变化趋势基本一致并都呈线性关系;破片的速度减少量不随初始速度变化,质量减少量则与冲击速度正相关,两者与冲击角度都负相关;破片临界跳飞角与冲击速度大小基本呈线性关系。展开更多
提出了一种新的近场动力学-有限元方法(peridynamics-finite element method,PD-FEM)混合模型.该模型用于求解材料热力耦合损伤问题,将求解域划分为近场动力学(PD)区域和有限元方法(FEM)区域,通过FEM节点与PD物质点构成的混合键连接各...提出了一种新的近场动力学-有限元方法(peridynamics-finite element method,PD-FEM)混合模型.该模型用于求解材料热力耦合损伤问题,将求解域划分为近场动力学(PD)区域和有限元方法(FEM)区域,通过FEM节点与PD物质点构成的混合键连接各个子区域.采用该模型对氧化铝陶瓷板在热冲击载荷作用下的损伤行为进行了模拟分析,计算结果表明,采用该混合模型获得的裂纹萌生及扩展与实验研究结果吻合良好,验证了该模型的正确性.该PD-FEM混合模型继承了PD处理不连续问题的优势,同时,由于FEM的引入,大大提高了PD方法在研究材料热力耦合损伤问题时的求解效率.展开更多
The paper considers application of artificial neural networks(ANNs)for fast numerical evaluation of a residual impactor velocity for a family of perforated PMMA(Polymethylmethacrylate)targets.The ANN models were train...The paper considers application of artificial neural networks(ANNs)for fast numerical evaluation of a residual impactor velocity for a family of perforated PMMA(Polymethylmethacrylate)targets.The ANN models were trained using sets of numerical results on impact of PMMA plates obtained via dynamic FEM coupled with incubation time fracture criterion.The developed approach makes it possible to evaluate the impact strength of a particular target configuration without complicated FEM calculations which require considerable computational resources.Moreover,it is shown that the ANN models are able to predict results for the configurations which cannot be processed using the developed FEM routine due to numerical instabilities and errors:the trained neural network uses information from successful computations to obtain results for the problematic cases.A simple static problem of a perforated plate deformation is discussed prior to the impact problem and preferable ANN architectures are presented for both problems.Some insight into the perforation pattern optimization using a genetic algorithm coupled with the ANN is also made and optimized perforation patterns which theoretically enhance the target impact strength are constructed.展开更多
基金financial funding of National Natural Science Foundation of China (No.52004307)China National Petroleum Corporation (No.ZLZX2020-02-04)the Science Foundation of China University of Petroleum,Beijing (No.2462018YJRC015)。
文摘The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative relationships for the variations of the inner boundary and propped fractures have not been determined and incorporated in the semi-analytical models for the pressure and rate transient analysis.This work focuses on describing the variations of the inner boundary and propped fractures and capturing the typical characteristics from the pressure transient curves.A generalized semi-analytical model was developed to characterize the dynamic behavior of the inner boundary and propped fractures under long-term production conditions.The pressure-dependent length shrinkage coefficients,which quantify the length changes of the inner zone and propped fractures,are modified and incorporated into this multi-zone semi-analytical model.With simultaneous numerical iterations and numerical inversions in Laplace and real-time space,the transient solutions to pressure and rate behavior are determined in just a few seconds.The dynamic behavior of the inner boundary and propped fractures on transient pressure curves is divided into five periods:fracture bilinear flow(FR1),dynamic PFs flow(FR2),inner-area linear flow(FR3),dynamic inner boundary flow(FR4),and outer-area dominated linear flow(FR5).The early hump during FR2 period and a positive upward shift during FR4period are captured on the log-log pressure transient curves,reflecting the dynamic behavior of the inner boundary and propped fractures during the long-term production period.The transient pressure behavior will exhibit greater positive upward trend and the flow rate will be lower with the shrinkage of the inner boundary.The pressure derivative curve will be upward earlier as the inner boundary shrinks more rapidly.The lower permeability caused by the closure of un-propped fractures in the inner zone results in greater upward in pressure derivative curves.If the permeability loss for the dynamic behavior of the inner boundary caused by the closure of un-propped fractures is neglected,the flow rate will be overestimated in the later production period.
基金Projects(52378411,52208404)supported by the National Natural Science Foundation of China。
文摘The tunnel subjected to strike-slip fault dislocation exhibits severe and catastrophic damage.The existing analysis models frequently assume uniform fault displacement and fixed fault plane position.In contrast,post-earthquake observations indicate that the displacement near the fault zone is typically nonuniform,and the fault plane position is uncertain.In this study,we first established a series of improved governing equations to analyze the mechanical response of tunnels under strike-slip fault dislocation.The proposed methodology incorporated key factors such as nonuniform fault displacement and uncertain fault plane position into the governing equations,thereby significantly enhancing the applicability range and accuracy of the model.In contrast to previous analytical models,the maximum computational error has decreased from 57.1%to 1.1%.Subsequently,we conducted a rigorous validation of the proposed methodology by undertaking a comparative analysis with a 3D finite element numerical model,and the results from both approaches exhibited a high degree of qualitative and quantitative agreement with a maximum error of 9.9%.Finally,the proposed methodology was utilized to perform a parametric analysis to explore the effects of various parameters,such as fault displacement,fault zone width,fault zone strength,the ratio of maximum fault displacement of the hanging wall to the footwall,and fault plane position,on the response of tunnels subjected to strike-slip fault dislocation.The findings indicate a progressive increase in the peak internal forces of the tunnel with the rise in fault displacement and fault zone strength.Conversely,an augmentation in fault zone width is found to contribute to a decrease in the peak internal forces.For example,for a fault zone width of 10 m,the peak values of bending moment,shear force,and axial force are approximately 46.9%,102.4%,and 28.7% higher,respectively,compared to those observed for a fault zone width of 50 m.Furthermore,the position of the peak internal forces is influenced by variations in the ratio of maximum fault displacement of the hanging wall to footwall and the fault plane location,while the peak values of shear force and axial force always align with the fault plane.The maximum peak internal forces are observed when the footwall exclusively bears the entirety of the fault displacement,corresponding to a ratio of 0:1.The peak values of bending moment,shear force,and axial force for the ratio of 0:1 amount to approximately 123.8%,148.6%,and 111.1% of those for the ratio of 0.5:0.5,respectively.
文摘准确计算户内变电站大型、复杂的噪声场分布,进而评价可采用降噪措施的减噪效果,是解决户内变电站噪声污染的关键问题。为此,综合声学有限元法(finite element method,FEM)求解复杂声场收敛性好及精度高的优点,及声学边界元法(boundary element method,BEM)降维求解大型声场的优势,提出了一种基于声学FEM-BEM的户内变电站噪声场求解算法。首先,建立变电站内部声源声固耦合模型,采用声学FEM求解混响噪声作用下的声固耦合响应;然后,基于声学FEM-BEM耦合理论,求解内、外耦合边界处结构单元受声固耦合激励产生的位移及应力载荷;最后,根据声压及应力载荷激发的外场声波扩散模型,基于常规Gauss数值积分法,建立外部空间声域2维BEM声学积分方程,求解外部声场。该算法在湖南某110 kV户内变电站噪声场的求解分析中得到了成功应用,与实测值的相对误差为3.61%~4.87%。
文摘碎屑流是我国山区最危险的地质灾害之一,山区桥墩常受到碎屑流冲击而开裂、倾斜甚至倒塌,给山区桥梁建设、运营带来严重的安全隐患。采用离散元方法(discrete element method,DEM)和有限元方法(finite element method,FEM)耦合的三维数值模拟方法模拟了碎屑流对双柱式桥墩的冲击效应,并结合斜槽试验,验证了耦合方法的准确性,进一步分析了碎屑流冲击坡度、距离和体积密度对桥墩冲击力的影响规律。结果表明,最大冲击力与碎屑流冲击坡度、距离和体积密度分别呈幂函数(指数大于1)、幂函数(指数小于1)和线性正相关。冲击坡度、距离和体积密度对最大冲击力的敏感度值分别为3.012、0.202、0.804,在桥梁碎屑流灾害防治时需重视冲击坡度和体积密度的影响。将冲击力的数值模拟值与流体动力学模型预测值对比分析表明,流体动力学模型理论公式能较好地预测桥墩所受的最大冲击力,最大预测误差低于23.6%。相关研究结果可为山区桥梁碎屑流灾害防治与设计提供一定的参考依据。
基金The authors gratefully acknowledge the financial support by the Key Project of High-speed Rail Joint Fund of National Natural Science Foundation of China(Grant No.U1934210)the Natural Science Foundation of Beijing,China(Grant No.8202037).
文摘Longitudinal cracks on the tunnel lining significantly influence the performance of tunnels in operation.In this study,we propose a semi-analytical method that provides a simple and effective way to calculate the internal forces of tunnel linings with multiple cracks.The semi-analytical solution is obtained using structural analysis considering the flexural rigidity for the cracked longitudinal section of the tunnel lining.Then the proposed solution is verified numerically.Using the proposed method,the influences of the crack depth and the number of cracks on the bending moment and modified crack tip stress are investigated.With the increase in crack depth,the bending moment of lining scetion adjacent to the crack decreases,while the bending moment of lining scetion far away from the crack increases slightly.The more the number of cracks in a tunnel lining,the easier the new cracks initiated.
基金supported by the German Research Foundation(DFG)under the project“Investigation and calculation of frost heave considering specific boundary conditions of ground freezing”(Grant No.409760547).
文摘The calculation of frost heaving with ice lens formation is still not standard for construction projects using artificial ground freezing(AGF).In fine-grained material,ice lenses may initiate and lead to significant heaving at the ground surface,which should be considered in advance.However,the complex processes during ice lens formation are still not fully understood and difficult to capture in a simple approach.In the past,the semi-analytical approach of Konrad and Morgenstern used one soil constant,the“segregation potential(SP)”.It has been mainly and most successfully applied to the heave calculation of natural-induced soil freezing in cold regions.Its application to AGF has been so far unsuccessful.To solve this,a new semi-analytical approach is presented in this paper.It includes AGF conditions such as bottom-up freezing,temperature gradients to reach great freezing velocities,and a distinction between two freezing states.One is the freezing-up state until a certain frost body thickness is reached(thermal transient state),and the other is a holding phase where the frost body thickness is kept constant(thermal quasi-steady state).To test its ability,the results are applied to another freezing direction,the top-down freezing.The new approach is validated using two different frost-susceptible soils and,in total,50 frost heave tests.In the thermal transient region,where the SP is applicable,the two semi-analytical approaches are compared,showing improved performance of the current method by about 15%.
文摘泥石流是我国西南山区常见的地质灾害。架空输电杆塔在泥石流的冲击下往往发生基础破坏甚至会造成杆塔倒塌。首先采用光滑粒子流体动力学(smoothed particle hydrodynamics,简称SPH)方法和有限元方法(finite element method,简称FEM)相耦合的三维数值方法模拟了泥石流对杆塔基础的冲击作用;在与相关模型试验结果验证的基础上,开展了不同泥石流密度、黏度系数及初始速度条件下对输电塔基础的冲击力作用的参数分析;研究结果表明:随着泥石流初始速度的增加,冲击力峰值会随之增大;前排基础的冲击力峰值均大于后排基础;泥石流冲击过程特性受到泥石流密度和黏度系数影响。与稀性泥石流相比:黏性泥石流冲击基础后,基础下游真空区相对要小;此外,将数值模拟结果与Kwan冲击力公式及铁二院推荐的冲击压力设计公式预测值进行对比分析可以发现:Kwan冲击力公式能较好地预测出基础所受泥石流冲击力的平均趋势,最大预测误差低于30%,铁二院公式预测的稀性和黏性泥石流的冲击压力平均偏低分别约17%和28%。相关研究结果有望为泥石流频发区域输电塔基础的设计和风险评估提供一定的参考依据。
文摘针对飞机典型部位在遭到高速破片攻击后结构整体的战伤状态及破片的剩余行为开展数值模拟。应用LS-DYNA软件,结合有限单元方法(finite element method,FEM)和光滑粒子流体动力学(smoothed particle hydrodynamics,SPH)两者的优势,建立自适应的FEM-SPH耦合模拟方法,并构建2种飞机典型部位的计算模型,采用六面体网格局部细化方法实现了核心位置的精确模拟,并进行试验来验证数值模型;开展了一系列高速冲击战伤模拟,对比了不同工况下破片高速冲击结构后形成的碎片云和破口形貌,并对破片的剩余速度和质量进行分析,确定了破片在结构蒙皮上的临界跳飞角。结果表明:自适应FEM-SPH耦合算法的计算结果与试验结果吻合良好,能够对破片高速冲击战伤进行有效准确模拟;碎片云分布形状随破片速度增加变得狭长,冲击角度会改变碎片云和结构破口形状朝向;碎片云高度和扩散速度随破片速度或角度的变化趋势基本一致并都呈线性关系;破片的速度减少量不随初始速度变化,质量减少量则与冲击速度正相关,两者与冲击角度都负相关;破片临界跳飞角与冲击速度大小基本呈线性关系。
文摘提出了一种新的近场动力学-有限元方法(peridynamics-finite element method,PD-FEM)混合模型.该模型用于求解材料热力耦合损伤问题,将求解域划分为近场动力学(PD)区域和有限元方法(FEM)区域,通过FEM节点与PD物质点构成的混合键连接各个子区域.采用该模型对氧化铝陶瓷板在热冲击载荷作用下的损伤行为进行了模拟分析,计算结果表明,采用该混合模型获得的裂纹萌生及扩展与实验研究结果吻合良好,验证了该模型的正确性.该PD-FEM混合模型继承了PD处理不连续问题的优势,同时,由于FEM的引入,大大提高了PD方法在研究材料热力耦合损伤问题时的求解效率.
基金Russian Science Foundation[grant number 22-71-10019].
文摘The paper considers application of artificial neural networks(ANNs)for fast numerical evaluation of a residual impactor velocity for a family of perforated PMMA(Polymethylmethacrylate)targets.The ANN models were trained using sets of numerical results on impact of PMMA plates obtained via dynamic FEM coupled with incubation time fracture criterion.The developed approach makes it possible to evaluate the impact strength of a particular target configuration without complicated FEM calculations which require considerable computational resources.Moreover,it is shown that the ANN models are able to predict results for the configurations which cannot be processed using the developed FEM routine due to numerical instabilities and errors:the trained neural network uses information from successful computations to obtain results for the problematic cases.A simple static problem of a perforated plate deformation is discussed prior to the impact problem and preferable ANN architectures are presented for both problems.Some insight into the perforation pattern optimization using a genetic algorithm coupled with the ANN is also made and optimized perforation patterns which theoretically enhance the target impact strength are constructed.