期刊文献+
共找到44,808篇文章
< 1 2 250 >
每页显示 20 50 100
An Overview of the Semi-arid Climate and Environment Research Observatory over the Loess Plateau 被引量:109
1
作者 黄建平 张武 +15 位作者 左金清 闭建荣 史晋森 王鑫 常倬林 黄忠伟 杨溯 张北斗 王国印 冯广泓 袁九毅 张镭 左洪超 王式功 符淙斌 丑纪范 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第6期906-921,共16页
Arid and semi-arid areas comprise about 30% of the earth's surface. Changes in climate and climate variability will likely have a significant impact on these regions. The Loess Plateau over Northwest China is a speci... Arid and semi-arid areas comprise about 30% of the earth's surface. Changes in climate and climate variability will likely have a significant impact on these regions. The Loess Plateau over Northwest China is a special semi-arid land surface and part of a dust aerosol source. To improve understanding and capture the direct evidence of the impact of human activity on the semi-arid climate over the Loess Plateau, the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) was established in 2005. SACOL consists of a large set of instruments and focuses on: (1) monitoring of long term tendencies in semiarid climate changes; (2) monitoring of the aerosol effect on the water cycle; (3) studies of interaction between land surface and the atmosphere; (4) improving the land surface and climate models; and (5) validation of space-borne observations. This paper presents a description of SACOL objectives, measurements, and sampling strategies. Preliminary observation results are also reviewed in this paper. 展开更多
关键词 cloud AEROSOL land surface semi-arid Loess Plateau SACOL
下载PDF
Progress in Semi-arid Climate Change Studies in China 被引量:21
2
作者 Jianping HUANG Jieru MA +2 位作者 Xiaodan GUAN Yue LI Yongli HE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第9期922-937,共16页
This article reviews recent progress in semi-arid climate change research in China.Results indicate that the areas of semiarid regions have increased rapidly during recent years in China,with an increase of 33%during ... This article reviews recent progress in semi-arid climate change research in China.Results indicate that the areas of semiarid regions have increased rapidly during recent years in China,with an increase of 33%during 1994-2008 compared to 1948-62.Studies have found that the expansion rate of semi-arid areas over China is nearly 10 times higher than that of arid and sub-humid areas,and is mainly transformed from sub-humid/humid regions.Meanwhile,the greatest warming during the past 100 years has been observed over semi-arid regions in China,and mainly induced by radiatively forced processes.The intensity of the regional temperature response over semi-arid regions has been amplified by land-atmosphere interactions and human activities.The decadal climate variation in semi-arid regions is modulated by oceanic oscillations,which induce land-sea and north-south thermal contrasts and affect the intensities of westerlies,planetary waves and blocking frequencies.In addition,the drier climates in semi-arid regions across China are also associated with the weakened East Asian summer monsoon in recent years.Moreover,dust aerosols in semi-arid regions may have altered precipitation by affecting the local energy and hydrological cycles.Finally,semi-arid regions in China are projected to continuously expand in the 21st century,which will increase the risk of desertification in the near future. 展开更多
关键词 semi-arid REGIONS DRYING EXPANSION WARMING dynamics
下载PDF
Influence of non-stationarity and auto-correlation of climatic records on spatio-temporal trend and seasonality analysis in a region with prevailing arid and semi-arid climate,Iran
3
作者 Mahsa MIRDASHTVAN Mohsen MOHSENI SARAVI 《Journal of Arid Land》 SCIE CSCD 2020年第6期964-983,共20页
Trend and stationarity analysis of climatic variables are essential for understanding climate variability and provide useful information about the vulnerability and future changes,especially in arid and semi-arid regi... Trend and stationarity analysis of climatic variables are essential for understanding climate variability and provide useful information about the vulnerability and future changes,especially in arid and semi-arid regions.In this study,various climatic zones of Iran were investigated to assess the relationship between the trend and the stationarity of the climatic variables.The Mann-Kendall test was considered to identify the trend,while the trend free pre-whitening approach was applied for eliminating serial correlation from the time-series.Meanwhile,time series stationarity was tested by Dickey-Fuller and Kwiatkowski-Phillips-Schmidt-Shin tests.The results indicated an increasing trend for mean air temperature series at most of the stations over various climatic zones,however,after eliminating the serial correlation factor,this increasing trend changes to an insignificant decreasing trend at a 95%confidence level.The seasonal mean air temperature trend suggested a significant increase in the majority of the stations.The mean air temperature increased more in northwest towards central parts of Iran that mostly located in arid and semiarid climatic zones.Precipitation trend reveals an insignificant downward trend in most of the series over various climatic zones;furthermore,most of the stations follow a decreasing trend for seasonal precipitation.Furthermore,spatial patterns of trend and seasonality of precipitation and mean air temperature showed that the northwest parts of Iran and margin areas of the Caspian Sea are more vulnerable to the changing climate with respect to the precipitation shortfalls and warming.Stationarity analysis indicated that the stationarity of climatic series influences on their trend;so that,the series which have significant trends are not static.The findings of this investigation can help planners and policy-makers in various fields related to climatic issues,implementing better management and planning strategies to adapt to climate change and variability over Iran. 展开更多
关键词 climate change trend analysis stationarity tests serial correlation SEASONALITY arid and semi-arid regions
下载PDF
Planetary Layer Lapse Rate Comparison of Tropical, Montane and Hot Semi-Arid Climates of Nigeria
4
作者 David O.Edokpa Precious NEde 《Journal of Atmospheric Science Research》 2020年第2期11-18,共8页
This study assessed the pattern of planetary layer lapse rate across the major climate belts of Nigeria.Six years’data(2010-2015)for air temperature values between 1000 mbar and 850 mbar atmospheric pressure levels w... This study assessed the pattern of planetary layer lapse rate across the major climate belts of Nigeria.Six years’data(2010-2015)for air temperature values between 1000 mbar and 850 mbar atmospheric pressure levels was acquired from Era-Interim Re-analysis data centre.The data was retrieved at 6-hourly synoptic hours:00:00 Hr,06:00 Hr.at 0.125o grid resolution.Results showed that the lower tropospheric layers throughout the various climate belts has a positive lapse rate.Findings also revealed that the average annual lapse rate condition were:Tropical wet zone(Port Harcourt)-5.6 oC/km;Bi-modal Tropical continental zone(Enugu)-5.8 oC/km;Montane zone(Jos)-6.5 oC/km;Mono-modal Tropical continental zone(Kano)-6.6 oC/km;and Hot semi-arid zone(Maiduguri)-6.6 oC/km.This average values presents the lapse rates to be near the Saturated Adiabatic Lapse Rate(SALR).Average diurnal results for the climate belts showed that lapse rate is higher during the afternoon and transition periods than the rest periods and increases from the coastal areas northward.The seasonal periods of highest lapse rates during the day time are from December-May(i.e.-5.8-9.5 oC/km)with slight decrease from June-November.The positive lapse rates of range-1.8 to 5.9 oC/km observed during the period of dawn across the entire region showed that infrared radiation was still being released and modified by less energetic mechanical turbulence that characterizes the surface layer across Nigeria.This also indicate that global warming is real and in substantial effect.The study findings imply that conditional instability prevailed over the entire region,therefore,the planetary layer environment will be of slow to moderate dispersive potential and will require forceful mechanism to lift emissions introduced into it.It is recommended that industrial stacks should be above 50 m to enhance the dispersion of emissions aloft. 展开更多
关键词 Lapse rates Planetary layer climate belts Nigeria Emissions
下载PDF
Scale dependence of forest fragmentation and its climate sensitivity in a semi-arid mountain:Comparing Landsat,Sentinel and Google Earth data
5
作者 Yuyang Xie Jitang Li +2 位作者 Tuya Wulan Yu Zheng Zehao Shen 《Geography and Sustainability》 CSCD 2024年第2期200-210,共11页
Landscape fragmentation is generally viewed as an indicator of environmental stresses or risks,but the fragmentation intensity assessment also depends on the scale of data and the definition of spatial unit.This study... Landscape fragmentation is generally viewed as an indicator of environmental stresses or risks,but the fragmentation intensity assessment also depends on the scale of data and the definition of spatial unit.This study aimed to explore the scale-dependence of forest fragmentation intensity along a moisture gradient in Yinshan Mountain of North China,and to estimate environmental sensitivity of forest fragmentation in this semi-arid landscape.We developed an automatic classification algorithm using simple linear iterative clustering(SLIC)and Gaussian mixture model(GMM),and extracted tree canopy patches from Google Earth images(GEI),with an accuracy of 89.2%in the study area.Then we convert the tree canopy patches to forest category according to definition of forest that tree density greater than 10%,and compared it with forest categories from global land use datasets,FROM-GLC10 and GlobeLand30,with spatial resolutions of 10 m and 30 m,respectively.We found that the FROM-GLC10 and GlobeLand30 datasets underestimated the forest area in Yinshan Mountain by 16.88%and 21.06%,respectively;and the ratio of open forest(OF,10%<tree coverage<40%)to closed forest(CF,tree coverage>40%)areas in the underestimated part was 2:1.The underestimations concentrated in warmer and drier areas occupied mostly by large coverage of OFs with severely fragmented canopies.Fragmentation intensity of canopies positively correlated with spring temperature while negatively correlated with summer precipitation and terrain slope.When summer precipitation was less than 300 mm or spring temperature higher than 4℃,canopy fragmentation intensity rose drastically,while the forest area percentage kept stable.Our study suggested that the spatial configuration,e.g.,sparseness,is more sensitive to drought stress than area percentage.This highlights the importance of data resolution and proper fragmentation measurements for forest patterns and environmental interpretation,which is the base of reliable ecosystem predictions with regard to the future climate scenarios. 展开更多
关键词 Tree canopy fragmentation Forest coverage Google Earth images Spatial Scale effect semi-arid mountains
下载PDF
Response of drought to climate extremes in a semi-arid inland river basin in China
6
作者 QU Zhicheng YAO Shunyu LIU Dongwei 《Journal of Arid Land》 SCIE CSCD 2024年第11期1505-1521,共17页
Against the backdrop of global warming,climate extremes and drought events have become more severe,especially in arid and semi-arid areas.This study forecasted the characteristics of climate extremes in the Xilin Rive... Against the backdrop of global warming,climate extremes and drought events have become more severe,especially in arid and semi-arid areas.This study forecasted the characteristics of climate extremes in the Xilin River Basin(a semi-arid inland river basin)of China for the period of 2021–2100 by employing a multi-model ensemble approach based on three climate Shared Socioeconomic Pathway(SSP)scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)from the latest Coupled Model Intercomparison Project Phase 6(CMIP6).Furthermore,a linear regression,a wavelet analysis,and the correlation analysis were conducted to explore the response of climate extremes to the Standardized Precipitation Evapotranspiration Index(SPEI)and Streamflow Drought Index(SDI),as well as their respective trends during the historical period from 1970 to 2020 and during the future period from 2021 to 2070.The results indicated that extreme high temperatures and extreme precipitation will further intensify under the higher forcing scenarios(SSP5-8.5>SSP2-4.5>SSP1-2.6)in the future.The SPEI trends under the SSP1-2.6,SSP2-4.5,and SSP5-8.5 scenarios were estimated as–0.003/a,–0.004/a,and–0.008/a,respectively,indicating a drier future climate.During the historical period(1970–2020),the SPEI and SDI trends were–0.003/a and–0.016/a,respectively,with significant cycles of 15 and 22 a,and abrupt changes occurring in 1995 and 1996,respectively.The next abrupt change in the SPEI was projected to occur in the 2040s.The SPEI had a significant positive correlation with both summer days(SU)and heavy precipitation days(R10mm),while the SDI was only significantly positively correlated with R10mm.Additionally,the SPEI and SDI exhibited a strong and consistent positive correlation at a cycle of 4–6 a,indicating a robust interdependence between the two indices.These findings have important implications for policy makers,enabling them to improve water resource management of inland river basins in arid and semi-arid areas under future climate uncertainty. 展开更多
关键词 climate extremes climate change Standardized Precipitation Evapotranspiration Index(SPEI) Streamflow Drought Index(SDI) wavelet analysis multi-model ensemble Xilin River Basin
下载PDF
Toward a Learnable Climate Model in the Artificial Intelligence Era 被引量:3
7
作者 Gang HUANG Ya WANG +3 位作者 Yoo-Geun HAM Bin MU Weichen TAO Chaoyang XIE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1281-1288,共8页
Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of ... Artificial intelligence(AI)models have significantly impacted various areas of the atmospheric sciences,reshaping our approach to climate-related challenges.Amid this AI-driven transformation,the foundational role of physics in climate science has occasionally been overlooked.Our perspective suggests that the future of climate modeling involves a synergistic partnership between AI and physics,rather than an“either/or”scenario.Scrutinizing controversies around current physical inconsistencies in large AI models,we stress the critical need for detailed dynamic diagnostics and physical constraints.Furthermore,we provide illustrative examples to guide future assessments and constraints for AI models.Regarding AI integration with numerical models,we argue that offline AI parameterization schemes may fall short of achieving global optimality,emphasizing the importance of constructing online schemes.Additionally,we highlight the significance of fostering a community culture and propose the OCR(Open,Comparable,Reproducible)principles.Through a better community culture and a deep integration of physics and AI,we contend that developing a learnable climate model,balancing AI and physics,is an achievable goal. 展开更多
关键词 artificial intelligence deep learning learnable climate model
下载PDF
Climate change, water resources and sustainable development in the arid and semi-arid lands of Central Asia in the past 30 years 被引量:23
8
作者 YU Yang PI Yuanyue +7 位作者 YU Xiang TA Zhijie SUN Lingxiao Markus DISSE ZENG Fanjiang LI Yaoming CHEN Xi YU Ruide 《Journal of Arid Land》 SCIE CSCD 2019年第1期1-14,共14页
The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the ... The countries of Central Asia are collectively known as the five "-stans": Uzbekistan, Kyrgyzstan, Turkmenistan, Tajikistan and Kazakhstan. In recent times, the Central Asian region has been affected by the shrinkage of the Aral Sea, widespread desertification, soil salinization, biodiversity loss, frequent sand storms, and many other ecological disasters. This paper is a review article based upon the collection, identification and collation of previous studies of environmental changes and regional developments in Central Asia in the past 30 years. Most recent studies have reached a consensus that the temperature rise in Central Asia is occurring faster than the global average. This warming trend will not only result in a higher evaporation in the basin oases, but also to a significant retreat of glaciers in the mountainous areas. Water is the key to sustainable development in the arid and semi-arid regions in Central Asia. The uneven distribution, over consumption, and pollution of water resources in Central Asia have caused severe water supply problems, which have been affecting regional harmony and development for the past 30 years. The widespread and significant land use changes in the 1990 s could be used to improve our understanding of natural variability and human interaction in the region. There has been a positive trend of trans-border cooperation among the Central Asian countries in recent years. International attention has grown and research projects have been initiated to provide water and ecosystem protection in Central Asia. However, the agreements that have been reached might not be able to deliver practical action in time to prevent severe ecological disasters. Water management should be based on hydrographic borders and ministries should be able to make timely decisions without political intervention. Fully integrated management of water resources, land use and industrial development is essential in Central Asia. The ecological crisis should provide sufficient motivation to reach a consensus on unified water management throughout the region. 展开更多
关键词 Central ASIA climate change water resources ARID and semi-arid lands land use changes sustainable DEVELOPMENT SOCIO-ECONOMIC DEVELOPMENT
下载PDF
New Record Ocean Temperatures and Related Climate Indicators in 2023 被引量:1
9
作者 Lijing CHENG John ABRAHAM +31 位作者 Kevin E.TRENBERTH Tim BOYER Michael EMANN Jiang ZHU Fan WANG Fujiang YU Ricardo LOCARNINI John FASULLO Fei ZHENG Yuanlong LI Bin ZHANG Liying WAN Xingrong CHEN Dakui WANG Licheng FENG Xiangzhou SONG Yulong LIU Franco RESEGHETTI Simona SIMONCELLI Viktor GOURETSKI Gengxin CHEN Alexey MISHONOV Jim REAGAN Karina VON SCHUCKMANN Yuying PAN Zhetao TAN Yujing ZHU Wangxu WEI Guancheng LI Qiuping REN Lijuan CAO Yayang LU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1068-1082,共15页
The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m oc... The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m ocean heat content(OHC)reached record highs.The 0–2000 m OHC in 2023 exceeded that of 2022 by 15±10 ZJ(1 Zetta Joules=1021 Joules)(updated IAP/CAS data);9±5 ZJ(NCEI/NOAA data).The Tropical Atlantic Ocean,the Mediterranean Sea,and southern oceans recorded their highest OHC observed since the 1950s.Associated with the onset of a strong El Niño,the global SST reached its record high in 2023 with an annual mean of~0.23℃ higher than 2022 and an astounding>0.3℃ above 2022 values for the second half of 2023.The density stratification and spatial temperature inhomogeneity indexes reached their highest values in 2023. 展开更多
关键词 ocean heat content SALINITY STRATIFICATION global warming climate
下载PDF
2023: Weather and Climate Extremes Hitting the Globe with Emerging Features 被引量:1
10
作者 Wenxia ZHANG Robin CLARK +12 位作者 Tianjun ZHOU Laurent LI Chao LI Juan RIVERA Lixia ZHANG Kexin GUI Tingyu ZHANG Lan LI Rongyun PAN Yongjun CHEN Shijie TANG Xin HUANG Shuai HU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1001-1016,共16页
Globally,2023 was the warmest observed year on record since at least 1850 and,according to proxy evidence,possibly of the past 100000 years.As in recent years,the record warmth has again been accompanied with yet more... Globally,2023 was the warmest observed year on record since at least 1850 and,according to proxy evidence,possibly of the past 100000 years.As in recent years,the record warmth has again been accompanied with yet more extreme weather and climate events throughout the world.Here,we provide an overview of those of 2023,with details and key background causes to help build upon our understanding of the roles of internal climate variability and anthropogenic climate change.We also highlight emerging features associated with some of these extreme events.Hot extremes are occurring earlier in the year,and increasingly simultaneously in differing parts of the world(e.g.,the concurrent hot extremes in the Northern Hemisphere in July 2023).Intense cyclones are exacerbating precipitation extremes(e.g.,the North China flooding in July and the Libya flooding in September).Droughts in some regions(e.g.,California and the Horn of Africa)have transitioned into flood conditions.Climate extremes also show increasing interactions with ecosystems via wildfires(e.g.,those in Hawaii in August and in Canada from spring to autumn 2023)and sandstorms(e.g.,those in Mongolia in April 2023).Finally,we also consider the challenges to research that these emerging characteristics present for the strategy and practice of adaptation. 展开更多
关键词 weather and climate extremes temperature extremes extreme precipitation DROUGHT WILDFIRES
下载PDF
Future changes in precipitation and water availability over the Tibetan Plateau projected by CMIP6 models constrained by climate sensitivity 被引量:1
11
作者 Hui Qiu Tianjun Zhou +3 位作者 Liwei Zou Jie Jiang Xiaolong Chen Shuai Hu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期40-46,共7页
Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assesse... Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes. 展开更多
关键词 Tibetan plateau climate sensitivity Precipitation projection Water availability projection
下载PDF
Interaction between climate and management on beta diversity components of vegetation in relation to soil properties in arid and semi-arid oak forests, Iran 被引量:3
12
作者 Heydari MEHDI Aazami FATEMEH +4 位作者 Faramarzi MARZBAN Omidipour REZA Bazgir MASOUD Pothier DAVID Prévosto BERNARD 《Journal of Arid Land》 SCIE CSCD 2019年第1期43-57,共15页
This study aimed to investigate the interaction between regions with different climatic conditions(arid vs. semi-arid) and management(protected vs. unprotected) on the turnover and nestedness of vegetation in relation... This study aimed to investigate the interaction between regions with different climatic conditions(arid vs. semi-arid) and management(protected vs. unprotected) on the turnover and nestedness of vegetation in relation to physical, chemical and biological properties of soils in the Ilam Province of Iran. In each of the two regions, we sampled 8 sites(4 managed and 4 unmanaged sites) within each of which we established 4 circular plots(1000 m^2) that were used to investigate woody species, while two micro-plots(1 m×1 m) were established in each 1000-m^2 plot to analyze herbaceous species. In each sample unit, we also extracted three soil samples(0–20 cm depth) for measuring soil properties. The results indicated that the interaction between region and conservational management significantly affected the percent of canopy cover of Persian oak(Quercus brantii Linddl), soil respiration, substrate-induced respiration, as well as beta and gamma diversities and turnover of plant species. The percent of oak canopy cover was positively correlated with soil silt, electrical conductivity, available potassium, and alpha diversity, whereas it was negatively correlated with plant turnover. In addition, plant turnover was positively related to available phosphorus, while nestedness of species was positively related to organic carbon and total nitrogen. According to these results, we concluded that physical, chemical, and biological characteristics of limited ecological niche generally influenced plant diversity. Also, this study demonstrated the major contribution of the beta diversity on gamma diversity, especially in semi-arid region, because of the higher heterogeneity of vegetation in this area. 展开更多
关键词 climatIC conditions conservation MANAGEMENT beta diversity OAK FORESTS physical-chemical property semi-arid region
下载PDF
Climate-growth relationships of Pinus tabuliformis along an altitudinal gradient on Baiyunshan Mountain,Central China 被引量:1
13
作者 Xiaoxu Wei Jianfeng Peng +5 位作者 Jinbao Li Jinkuan Li Meng Peng Xuan Li Yameng Liu Jiaxin Li 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期202-212,共11页
A set of standard chronologies for tree-ring width(TRW),earlywood width(EWW)and latewood width(LWW)in Pinus tabuliformis Carr.along an altitudi-nal gradient(1450,1400,and 1350 m a.s.l.)on Baiyunshan Mountain,Central C... A set of standard chronologies for tree-ring width(TRW),earlywood width(EWW)and latewood width(LWW)in Pinus tabuliformis Carr.along an altitudi-nal gradient(1450,1400,and 1350 m a.s.l.)on Baiyunshan Mountain,Central China to analyze the effect of varying temperature and precipitation on growth along the gradi-ent.Correlation analyses showed that at all three altitudes and the TRW and EWW chronologies generally had signifi-cant negative correlations with mean and maximum tem-peratures in the current April and May and with minimum temperatures in the prior July and August,but significant positive correlations with precipitation in the current May.Correlations were generally significantly negative between LWW chronologies and all temperatures in the prior July and August,indicating that the prior summer temperature had a strong lag effect on the growth of P.tabuliformis that increased with altitude.The correlation with the standard-ized precipitation evapotranspiration index(SPEI)confirmed that wet conditions in the current May promoted growth of TR and EW at all altitudes.Significant altitudinal differences were also found;at 1400 m,there were significant positive correlations between EWW chronologies and SPEI in the current April and significant negative correlations between LWW chronologies and SPEI in the current September,but these correlations were not significant at 1450 m.At 1350 m,there were also significant negative correlations between the TRW and the EWW chronologies and SPEI in the prior October and the current July and between LWW chronology and SPEI in the current August,but these cor-relations were not significant at 1400 m.Moving correlation results showed a stable response of EWW in relation to the SPEI in the current May at all three altitudes and of LWW to maximum temperature in the prior July-August at 1400 m from 2002 to 2018.The EWW chronology at 1400 m and the LWW chronology at 1450 m were identified as more suitable for climate reconstruction.These results provide a strong scientific basis for forest management decisions and climate reconstructions in Central China. 展开更多
关键词 Tree rings climate response Altitudinal gradient Baiyunshan Mountain Pinus tabuliformis Carr
下载PDF
Climate change drives flooding risk increases in the Yellow River Basin 被引量:1
14
作者 Hengxing Lan Zheng Zhao +9 位作者 Langping Li Junhua Li Bojie Fu Naiman Tian Ruixun Lai Sha Zhou Yanbo Zhu Fanyu Zhang Jianbing Peng John J.Clague 《Geography and Sustainability》 CSCD 2024年第2期193-199,共7页
The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing ... The Yellow River Basin(YRB)has experienced severe floods and continuous riverbed elevation throughout history.Global climate change has been suggested to be driving a worldwide increase in flooding risk.However,owing to insufficient evidence,the quantitative correlation between flooding and climate change remains illdefined.We present a long time series of maximum flood discharge in the YRB dating back to 1843 compiled from historical documents and instrument measurements.Variations in yearly maximum flood discharge show distinct periods:a dramatic decreasing period from 1843 to 1950,and an oscillating gentle decreasing from 1950 to 2021,with the latter period also showing increasing more extreme floods.A Mann-Kendall test analysis suggests that the latter period can be further split into two distinct sub-periods:an oscillating gentle decreasing period from 1950 to 2000,and a clear recent increasing period from 2000 to 2021.We further predict that climate change will cause an ongoing remarkable increase in future flooding risk and an∼44.4 billion US dollars loss of floods in the YRB in 2100. 展开更多
关键词 Flooding risk Risk management climate change Flood discharge Extreme precipitation
下载PDF
Can climate change influence agricultural GTFP in arid and semi-arid regions of Northwest China? 被引量:7
15
作者 FENG Jian ZHAO Lingdi +3 位作者 ZHANG Yibo SUN Lingxiao YU Xiang YU Yang 《Journal of Arid Land》 SCIE CSCD 2020年第5期837-853,共17页
There are eight provinces and autonomous regions(Gansu Province,Ningxia Hui Autonomous Region,Xinjiang Uygur Autonomous Region,Inner Mongolia Autonomous Region,Tibet Autonomous Region,Qinghai Province,Shanxi Province,... There are eight provinces and autonomous regions(Gansu Province,Ningxia Hui Autonomous Region,Xinjiang Uygur Autonomous Region,Inner Mongolia Autonomous Region,Tibet Autonomous Region,Qinghai Province,Shanxi Province,and Shaanxi Province)in Northwest China,most areas of which are located in arid and semi-arid regions(northwest of the 400 mm precipitation line),accounting for 58.74%of the country's land area and sustaining approximately 7.84×10^6 people.Because of drought conditions and fragile ecology,these regions cannot develop agriculture at the expense of the environment.Given the challenges of global warming,the green total factor productivity(GTFP),taking CO2 emissions as an undesirable output,is an effective index for measuring the sustainability of agricultural development.Agricultural GTFP can be influenced by both internal production factors(labor force,machinery,land,agricultural plastic film,diesel,pesticide,and fertilizer)and external climate factors(temperature,precipitation,and sunshine duration).In this study,we used the Super-slacks-based measure(Super-SBM)model to measure agricultural GTFP during the period 2000-2016 at the regional level.Our results show that the average agricultural GTFP of most provinces and autonomous regions in arid and semi-arid regions underwent a fluctuating increase during the study period(2000-2016),and the fluctuation was caused by the production factors(input and output factors).To improve agricultural GTFP,Shaanxi,Shanxi,and Gansu should reduce agricultural labor force input;Shaanxi,Inner Mongolia,Gansu,and Shanxi should decrease machinery input;Shaanxi,Inner Mongolia,Xinjiang,and Shanxi should reduce fertilizer input;Shaanxi,Xinjiang,Gansu,and Ningxia should reduce diesel input;Xinjiang and Gansu should decrease plastic film input;and Gansu,Shanxi,and Inner Mongolia should cut pesticide input.Desirable output agricultural earnings should be increased in Qinghai and Tibet,and undesirable output(CO2 emissions)should be reduced in Inner Mongolia,Xinjiang,Gansu,and Shaanxi.Agricultural GTFP is influenced not only by internal production factors but also by external climate factors.To determine the influence of climate factors on GTFP in these provinces and autonomous regions,we used a Geographical Detector(Geodetector)model to analyze the influence of climate factors(temperature,precipitation,and sunshine duration)and identify the relationships between different climate factors and GTFP.We found that temperature played a significant role in the spatial heterogeneity of GTFP among provinces and autonomous regions in arid and semi-arid regions.For Xinjiang,Inner Mongolia,and Tibet,a suitable average annual temperature would be in the range of 7℃-9℃;for Gansu,Shanxi,and Ningxia,it would be 11℃-13℃;and for Shaanxi,it would be 15℃-17℃.Stable climatic conditions and more efficient production are prerequisites for the development of sustainable agriculture.Hence,in the agricultural production process,reducing the redundancy of input factors is the best way to reduce CO2 emissions and to maintain temperatures,thereby improving the agricultural GTFP.The significance of this study is that it explores the impact of both internal production factors and external climatic factors on the development of sustainable agriculture in arid and semi-arid regions,identifying an effective way forward for the arid and semi-arid regions of Northwest China. 展开更多
关键词 climate change agricultural GTFP Super-slacks-based measure(Super-SBM)model Geodetector CO2 emissions arid regions semi-arid regions
下载PDF
Coral records of Mid-Holocene sea-level highstands and climate responses in the northern South China Sea 被引量:1
16
作者 Yuanfu Yue Lichao Tang +1 位作者 Kefu Yu Rongyong Huang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期43-57,共15页
High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a b... High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a basis for scientific assessment of the evolutionary trend of coral reefs in the SCS.Although sporadic studies have been performed around Hainan Island in the northern SCS,the reconstructed sea level presents different values or is controversial because the indicative meaning of the sea-level indicators were neither quantified nor uniform criteria.Here,we determined the quantitative relationship between modern living coral and sea level by measuring the top surfaces of 27 live Porites corals from the inner reef flat along the east coast of Hainan Island and assessed the accuracy of results obtained using coral as sea-level indicators.Additionally,three in situ fossil Porites corals were analyzed based on elevation measurements,digital X-ray radiography,and U-Th dating.The survey results showed that the indicative meanings for the modern live Porites corals is(146.09±8.35)cm below the mean tide level(MTL).It suggested that their upward growth limit is constrained by the sea level,and the lowest low water is the highest level of survival for the modern live Porites corals.Based on the newly defined indicative meanings,6 new sea-level index points(SLIPs)were obtained and 19 published SLIPs were recalculated.Those SLIPs indicated a relative sea level fluctuation between(227.7±9.8)cm to(154.88±9.8)cm MTL between(5393±25)cal a BP and(3390±12)cal a BP,providing evidences of the Mid-Holocene sea-level highstand in the northern SCS.Besides that,our analysis demonstrated that different sea-level histories may be produced based on different indicative meanings or criteria.The dataset of 276 coral U-Th ages indicates that coral reef development in the northern SCS comprised the initial development,boom growth,decline,and flourishing development again.A comparison with regional records indicated that synergistic effects of climatic and environmental factors were involved in the development of coral reefs in the northern SCS.Thus,the cessation of coral reef development during the Holocene in the northern SCS was probably associated with the dry and cold climate in South China,as reflected in the synchronous weakening of the ENSO and East Asian summer monsoon induced by the reduction of the 65°N summer insolation,which forced the migration of the Intertropical Convergence Zone. 展开更多
关键词 northern South China Sea Middle Holocene sea-level highstand Porites corals climate response
下载PDF
A progress review of black carbon deposition on Arctic snow and ice and its impact on climate change 被引量:1
17
作者 ZHANG Zilu ZHOU Libo ZHANG Meigen 《Advances in Polar Science》 CSCD 2024年第2期178-191,共14页
The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant... The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant reduction in snow albedo and accelerate melting of snow and ice in the Arctic.By reviewing the published literatures over the past decades,this work provides an overview of the progress in both the measurement and modeling of BC deposition and its impact on Arctic climate change.In summary,the maximum value of BC deposition appears in the western Russian Arctic(26 ng·g^(–1)),and the minimum value appears in Greenland(3 ng·g^(–1)).BC records in the Arctic ice core already peaked in 1920s and 1970s,and shows a regional difference between Greenland and Canadian Arctic.The different temporal variations of Arctic BC ice core records in different regions are closely related to the large variability of BC emissions and transportation processes across the Arctic region.Model simulations usually underestimate the concentration of BC in snow and ice by 2–3 times,and cannot accurately reflect the seasonal and regional changes in BC deposition.Wet deposition is the main removal mechanism of BC in the Arctic,and observations show different seasonal variations in BC wet deposition in Ny-Ålesund and Barrow.This discrepancy may result from varying contributions of anthropogenic and biomass burning(BB)emissions,given the strong influence by BC from BB emissions at Barrow.Arctic BC deposition significantly influences regional climate change in the Arctic,increasing fire activities in the Arctic have made BB source of Arctic BC more crucial.On average,BC in Arctic snow and ice causes an increase of+0.17 W·m^(–2)in radiative forcing and 8 Gt·a^(–1)in runoff in Greenland.As stressed in the latest Arctic Monitoring and Assessment Programme report,reliable source information and long-term and high-resolution observations on Arctic BC deposition will be crucial for a more comprehensive understanding and a better mitigation strategy of Arctic BC.In the future,it is necessary to collect more observations on BC deposition and the corresponding physical processes(e.g.,snow/ice melting,surface energy balance)in the Arctic to provide reliable data for understanding and clarifying the mechanism of the climatic impacts of BC deposition on Arctic snow and ice. 展开更多
关键词 Arctic climate black carbon ALBEDO SNOW DEPOSITION
下载PDF
Impact of Wetland Change on Local Climate in Semi-arid Zone of Northeast China 被引量:3
18
作者 LIU Yan SHENG Lianxi LIU Jiping 《Chinese Geographical Science》 SCIE CSCD 2015年第3期309-320,共12页
Wetlands are sensitive to climate change, in the same time, wetlands can influence climate. This study analyzed the spa- rio-temporal characteristics of wetland change in the semi-arid zone of Northeast China from 198... Wetlands are sensitive to climate change, in the same time, wetlands can influence climate. This study analyzed the spa- rio-temporal characteristics of wetland change in the semi-arid zone of Northeast China from 1985 to 2010, and investigated the impact of large area of wetland change on local climate. Results showed that the total area of wetlands was on a rise in the study area. Although natural wetlands (marshes, riparians and lakes) decreased, constructed wetlands (rice fields) increased significantly, and the highest in- crease rate in many places exceeded 30%. Anthropogenic activities are major driving factors for wetland change. Wetland change pro- duced an impact on local climate, mainly on maximum temperature and precipitation during the period of May-September. The increase (or decrease) of wetland area could reduce (or increase) the increment of maximum temperature and the decrement of precipitation. The changes in both maximum temperature and precipitation corresponded with wetland change in spatial distribution. Wetland change played a more important role in moderating local climate compared to the contribution of woodland and grassland changes in the study area. Cold-humid effect of wetlands was main way to moderating local climate as well as alleviating climatic wanning and drying in the study area, and heterogeneity of underlying surface broadened the cold-humid effect of wetlands. 展开更多
关键词 wetland change local climate rice field semi-arid zone Northeast China
下载PDF
A study on the simulation of carbon and water fluxes of Dangxiong alpine meadow and its response to climate change 被引量:1
19
作者 Lingyun He Lei Zhong +3 位作者 Yaoming Ma Yuting Qi Jie Liu Peizhen Li 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期22-27,共6页
The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of th... The alpine meadow ecosystem accounts for 27%of the total area of the Tibetan Plateau and is also one of the most important vegetation types.The Dangxiong alpine meadow ecosystem,located in the south-central part of the Tibetan Plateau,is a typical example.To understand the carbon and water fluxes,water use efficiency(WUE),and their responses to future climate change for the alpine meadow ecosystem in the Dangxiong area,two parameter estimation methods,the Model-independent Parameter Estimation(PEST)and the Dynamic Dimensions Search(DDS),were used to optimize the Biome-BGC model.Then,the gross primary productivity(GPP)and evapotranspiration(ET)were simulated.The results show that the DDS parameter calibration method has a better performance.The annual GPP and ET show an increasing trend,while the WUE shows a decreasing trend.Meanwhile,ET and GPP reach their peaks in July and August,respectively,and WUE shows a“dual-peak”pattern,reaching peaks in May and November.Furthermore,according to the simulation results for the next nearly 100 years,the ensemble average GPP and ET exhibit a significant increasing trend,and the growth rate under the SSP5–8.5 scenario is greater than that under the SSP2–4.5 scenario.WUE shows an increasing trend under the SSP2–4.5 scenario and a significant increasing trend under the SSP5–8.5 scenario.This study has important scientific significance for carbon and water cycle prediction and vegetation ecological protection on the Tibetan Plateau. 展开更多
关键词 Carbon and water flux Water use efficiency Alpine meadow Biome-BGC model climate change
下载PDF
Prevalence of vegetation browning in China’s drylands under climate change 被引量:1
20
作者 Li Fu Guolong Zhang +3 位作者 Jianping Huang Ming Peng Lei Ding Dongliang Han 《Geography and Sustainability》 CSCD 2024年第3期405-414,共10页
Vegetation greening has long been acknowledged,but recent studies have pointed out that vegetation greening is possibly stalled or even reversed.However,detailed analyses about greening reversal or increased browning ... Vegetation greening has long been acknowledged,but recent studies have pointed out that vegetation greening is possibly stalled or even reversed.However,detailed analyses about greening reversal or increased browning of vegetation remain scarce.In this study,we utilized the normalized difference vegetation index(NDVI)as an indicator of vegetation to investigate the trends of vegetation greening and browning(monotonic,interruption,and reversal)through the breaks for the additive season and trend(BFAST)method across China’s drylands from 1982 to 2022.It also reveals the impacts of ecological restoration programs(ERPs)and climate change on these vegetation trends.We find that the vegetation displays an obvious pattern of east-greening and west-browning in China’s drylands.Greening trends mainly exhibits monotonic greening(29.8%)and greening with setback(36.8%),whereas browning shows a greening to browning reversal(19.2%).The increase rate of greening to browning reversal is 0.0342/yr,which is apparently greater than that of greening with setback,0.0078/yr.This research highlights that,under the background of widespread vegetation greening,vegetation browning is pro-gressively increasing due to the effects of climate change.Furthermore,the ERPs have significantly increased vegetation coverage,with the increase rate in 2000-2022 being twice as much as that of 1982-1999 in reveg-etation regions.Vegetation browning in southwestern Qingzang Plateau is primarily driven by adverse climatic factors and anthropogenic disturbances,which offset the efforts of ERPs. 展开更多
关键词 China’s drylands Ecological restoration programs climate change Greening to browning reversal BFAST
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部