[Objective] This study aimed to investigate the influences of grazing and fencing on grassland productivity and carrying capacity of subtropical natural warmtemperature tussock. [Method] With the natural warm temperat...[Objective] This study aimed to investigate the influences of grazing and fencing on grassland productivity and carrying capacity of subtropical natural warmtemperature tussock. [Method] With the natural warm temperature tussock in Longli County of Guizhou Province as study area, monthly, seasonal and annual dynamics of grassland productivity were investigate continuously during 2010 -2012, and the data were analyzed. [Result] Under grazing and fencing conditions, grassland present biomass and forage growth of warm temperature tussock in Longli County of Guizhou Province both increased first and decreased, reaching the maximum from August to October. Fencing significantly improved the productivity of natural grassland but had little effect on the vegetation composition. [Conclusion] From the perspective of grass-livestock balance, the suitable stocking capacity of warm-temperature tussock in the central region of Guizhou Province was 3.45 -4.66 sheep/hm2 , which has high ecological efficiency and can be borne by farmers and herdsmen.展开更多
With increasingly intensifying degradation of natural grasslands and rapidly increasing demand of high quality forages, natural grasslands in China have been converted into planted grasslands at an unprecedented rate ...With increasingly intensifying degradation of natural grasslands and rapidly increasing demand of high quality forages, natural grasslands in China have been converted into planted grasslands at an unprecedented rate and the magnitude of the conversion in Inner Mongolia is among the national highest where the areal extent of planted grasslands ranks the second in China. Such land-use changes(i.e., converting natural grasslands into planted grasslands) can significantly affect carbon stocks and carbon emissions in grassland ecosystems. In this study, we analyzed the effects of converting natural grasslands into planted grasslands(including Medicago sativa, Elymus cylindricus, and M. sativa+E. cylindricus) on ecosystem respiration(F(eco)) in Inner Mongolia of China. Diurnal F(eco) and its components(i.e., total soil respiration(F(ts)), soil heterotrophic respiration(F(sh)) and vegetation autotrophic respiration(F(va))) were measured in 2012(27 July to 5 August) and 2013(18 July to 25 July) in the natural and planted grasslands. Meteorological data, aboveground vegetation data and soil data were simultaneously collected to analyze the relationships between respiration fluxes and environmental factors in those grasslands. In 2012, the daily mean F(eco) in the M. sativa grassland was higher than that in the natural grassland, and the daily mean F(va) was higher in all planted grasslands(i.e., M. sativa, E. cylindricus, and M. sativa+E. cylindricus) than in the natural grassland. In contrast, the daily mean F(ts) and F(sh) were lower in all planted grasslands than in the natural grassland. In 2013, the daily mean F(eco), F(ts) and F(va) in all planted grasslands were higher than those in the natural grassland, and the daily mean F(sh) in the M. sativa+E. cylindricus grassland was higher than that in the natural grassland. The two-year experimental results suggested that the conversion of natural grasslands into planted grasslands can generally increase the F(eco) and the increase in F(eco) is more pronounced when the plantation becomes more mature. The results also indicated that F(sh) contributed more to F(eco) in the natural grassland whereas F(va) contributed more to F(eco) in the planted grasslands. The regression analyses show that climate factors(air temperature and relative humidity) and soil properties(soil organic matter, soil temperature, and soil moisture) strongly affected respiration fluxes in all grasslands. However, our observation period was admittedly too short. To fully understand the effects of such land-use changes(i.e., converting natural grasslands into planted grasslands) on respiration fluxes, longer-term observations are badly needed.展开更多
Livestock grazing has a significant impact on natural grasslands,with approximately one-third of the world’s land area dedicated to this industry.Around 20%of global grasslands are highly degraded due to overgrazing,...Livestock grazing has a significant impact on natural grasslands,with approximately one-third of the world’s land area dedicated to this industry.Around 20%of global grasslands are highly degraded due to overgrazing,affecting their productivity and conservation capacity.Best practices are required to ensure sustainable livestock production that supports biodiversity.The Intermediate Disturbance Hypothesis(IDH)suggests that environments with moderate levels of disturbance exhibit a higher species diversity.Moderate grazing can reduce the dominance of certain species,thereby enhancing plant diversity.However,concerns arise regarding the increase of exotic and unpalatable species under moderate grazing levels,complicating grassland conservation efforts.The impact of livestock grazing on the functional structure of grasslands depends on factors such as grazing intensity,livestock species,and environmental conditions.Variations in grazing intensity may increase specific and functional diversity under moderate grazing,potentially masking the presence of invasive exotic species.In the Austral Pampas(Pampean phytogeographic province,Buenos Aires,Argentina),grasslands face various pressures from domestic livestock grazing that endanger their integrity if not properly managed.Therefore,our study aims to investigate potential differences in species richness and diversity,functional diversity,exotic plant abundance,and the number and distribution of plant functional groups across varying grazing intensities.The IDH is utilized as a tool to regulate livestock pressure for grassland conservation.Species and functional diversity indices were used to assess the impact of grazing on grassland diversity.Moderate grazing increased species and functional diversity,while intensively grazed or ungrazed areas showed reduced diversity.Livestock presence influenced the balance between native and exotic plants,with ungrazed areas having higher native plant abundance and grazed areas exhibiting higher exotic plant abundance.Grazing also influenced the composition of functional groups,with grazing-avoiding species being more prevalent in heavily grazed areas.Principal Component Analysis revealed a clear association between vegetation composition and livestock grazing intensity.These findings offer valuable insights into effectively managing grazing intensity for biodiversity conservation purposes.展开更多
Taking natural grassland on the northern slope of the Qilian Mountain for example, this paper investigated and compared aboveground and belowground biomass of grassland in multi-year enclosure(20 years), one-year encl...Taking natural grassland on the northern slope of the Qilian Mountain for example, this paper investigated and compared aboveground and belowground biomass of grassland in multi-year enclosure(20 years), one-year enclosure, control areas(natural grazing areas). The results showed that coverage and height of the enclosure sample plots were significantly higher than that of natural grazing area(P <0.05); mean aboveground biomass of grassland: multi-year enclosure(316.58 g/m^2) > one-year enclosure area(299.07 g/m^2) > multi-year enclosure control area(254.39 g/m^2) > one-year enclosure control area(187.37 g/m^2); belowground biomass: multi-year enclosure(2,906.90 g/m^2) > one-year enclosure area(2,587.26 g/m^2) > multi-year enclosure control area(2,378.93 g/m^2) > one-year enclosure control area(2,029.17 g/m^2); mean aboveground biomass of natural grassland was 263.60 g/m^2, mean belowground biomass 2,225.56 g/m^2; ratio of belowground biomass to aboveground biomass varied between 6.79 and 12.90, distribution of belowground biomass and aboveground biomass in each plot showed significant differences(P <0.05). Enclosure was favorable for improving the coverage and biomass of natural grassland plant communities in the Qilian Mountains.展开更多
This on-farm study was conducted in Zamfara reserve of north western Nigeria between July, 2002 and June, 2003 to assess feed intake and liveweight of 12 indigenous Red Sokoto castrated bucks, separated into two group...This on-farm study was conducted in Zamfara reserve of north western Nigeria between July, 2002 and June, 2003 to assess feed intake and liveweight of 12 indigenous Red Sokoto castrated bucks, separated into two groups of six, supplemented and nonsupplemented respectively. The nonsupplemented group grazed natural pasture and crop stubble of crop fields, whereas the supplemented group grazed natural pasture, crop stubbles and received concentrate supplementation. Concentrate supplement (wheat offal) was fed at 1% of the metabolic weight of the animals which corresponds to the mean of the farmers offer. The total faecal collection method and grab samples of feed were used to estimate total intake of dry matter (DM), organic matter (OM), crude protein (CP) and metabolizable energy (ME). Liveweight of the animal was recorded at five weekly intervals. Results of the study indicated that nutrients intake of supplemented animals were generally higher than those of the nonsupplemented group, but not significantly different (P 〉 0.05). However, it was observed that supplementation significantly (P 〈 0.05) affected the liveweight of the supplemented bucks during early dry season in December, During this period feed became more available to the grazing animals from crop residues. It was therefore concluded that supplementation with wheat offal at 1% metabolic weight may not be enough to counteract weight loss of grazing goats during the other periods of dry season in this environment.展开更多
In order to increase the productivity of grassland animal husbandry,reduce natural disasters,curb grassland degradation and solve some problems of animal husbandry development in Inner Mongolia,we should actively deve...In order to increase the productivity of grassland animal husbandry,reduce natural disasters,curb grassland degradation and solve some problems of animal husbandry development in Inner Mongolia,we should actively develop feed shrubs.Forage forests can supplement the shortage of feed caused by seasonal difference and natural disasters in natural grasslands in winter and spring,solve the difficulties in storage and transportation of feed and shortage of funds,regulate the climate,improve the soil fertility,proof wind and fix sand,thereby promoting the benign cycle of grassland ecology.In the natural grasslands of Inner Mongolia,shrubs or small arbors such as Caragana microphylla,Caragana korshinskii Kom,Hedysarum scoparium Fisch et May,Hedysarum mongolicum Turcz,Lespedeza bicolor Turcz,Hippophae rhamnoides Linn,Ulmaceae macrocarpa Hance and Kochia prostrata(L.)Schrad can be used to create forage forests.Scientific research should be actively carried out on the harvesting and cutting period,planting scale,feeding methods and breeding of improved varieties of forage forests.展开更多
The semi-arid grasslands in Inner Mongolia, China have been degraded by long-term grazing. A series of ecological restoration strategies have been implemented to improve grassland service. However, little is known abo...The semi-arid grasslands in Inner Mongolia, China have been degraded by long-term grazing. A series of ecological restoration strategies have been implemented to improve grassland service. However, little is known about the effect of these ecological restoration practices on soil carbon and nitrogen storage. In this study, characteristics of vegetation and soil properties under continued grazing and exclusion of livestock for six years due to a nationwide conservation program—′Returning Grazing Lands to Grasslands(RGLG)′ were examined in semi-arid Hulun Buir grassland in Inner Mongolia, China. The results show that removal of grazing for six years resulted in a significant recovery in vegetation with higher above and below-ground biomass, but a lower soil bulk density and pH value. After six years of grazing exclusion, soil organic C and total N storage increased by 13.9% and 17.1%, respectively, which could be partly explained by decreased loss and increased input of C and N to soil. The effects of grazing exclusion on soil C and N concentration and storage primarily occurred in the upper soil depths. The results indicate that removal of grazing pressure within the RGLG program was an effective restoration approach to control grassland degradation in this region. However, more comprehensive studies are needed to evaluate the effectiveness of the RGLG program and to improve the management strategies for grassland restoration in this area.展开更多
Mowing is an important land management practice for natural semi-arid regions. A growing body of empirical evidence shows that different mowing regimes affect the functioning of grassland ecosystems. However, the resp...Mowing is an important land management practice for natural semi-arid regions. A growing body of empirical evidence shows that different mowing regimes affect the functioning of grassland ecosystems. However, the responses of plant functional traits to long-term mowing and their allometric scaling under long-term mowing are poorly understood. For a better understanding of the effects of mowing on grassland ecosystems, we analyzed the allometric traits of leaves and stems of Leymus chinensis (Trin.) Tzvel., a dominant grass species in eastern Eurasian temperate grassland, at different mowing intensities (no clipping, clipping once every two years, once a year and twice a year). Experiments were conducted on plots established over a decade ago in a typical steppe of Xilinhot, Inner Mongolia, China. Results showed that most of the functional traits of L. chinensis decreased with the increased mowing intensity. The responses of leaves and stems to long-term mowing were asymmetric, in which leaf traits were more stable than stem traits. Also significant allometric relationships were found among most of the plant functional traits under the four mowing treatments. Sensitive traits of L. chinensis (e.g. leaf length and stem length) were primary indicators associated with aboveground biomass decline under high mowing intensity. In conclusion, the allometric growth of different functional traits of L. chinensis varies with different long-term mowing practices, which is likely to be a strategy used by the plant to adapt to the mowing disturbances.展开更多
The aboveground primary production is a major source of carbon(C) and nitrogen(N) pool and plays an important role in regulating the response of ecosystem and nutrient cycling to natural and anthropogenic disturbances...The aboveground primary production is a major source of carbon(C) and nitrogen(N) pool and plays an important role in regulating the response of ecosystem and nutrient cycling to natural and anthropogenic disturbances. To explore the mechanisms underlying the effect of spring fire and topography on the aboveground biomass(AGB) and the soil C and N pool, we conducted a field experiment between April 2014 and August 2016 in a semi-arid grassland of northern China to examine the effects of slope and spring fire, and their potential interactions on the AGB and organic C and total N contents in different plant functional groups(C_3 grasses, C_4 grasses, forbs, Artemisia frigida plants, total grasses and total plants).The dynamics of AGB and the contents of organic C and N in the plants were examined in the burned and unburned plots on different slope positions(upper and lower). There were differences in the total AGB of all plants between the two slope positions. The AGB of grasses was higher on the lower slope than on the upper slope in July. On the lower slope, spring fire marginally or significantly increased the AGB of C_3 grasses, forbs, total grasses and total plants in June and August, but decreased the AGB of C_4 grasses and A.frigida plants from June to August. On the upper slope, however, spring fire significantly increased the AGB of forbs in June, the AGB of C_3 grasses and total grasses in July, and the AGB of forbs and C_4 grasses in August. Spring fire exhibited no significant effect on the total AGB of all plants on the lower and upper slopes in 2014 and 2015. In 2016, the total AGB in the burned plots showed a decreasing trend after fire burning compared with the unburned plots. The different plant functional groups had different responses to slope positions in terms of organic C and N contents in the plants. The lower and upper slopes differed with respect to the organic C and N contents of C_3 grasses, C_4 grasses, total grasses, forbs, A. frigida plants and total plants in different growing months. Slope position and spring fire significantly interacted to affect the AGB and organic C and N contents of C_4 grasses and A. frigida plants. We observed the AGB and organic C and N contents in the plants in a temporal synchronized pattern. Spring fire affected the functional AGB on different slope positions, likely by altering the organic C and N contents and, therefore,it is an important process for C and N cycling in the semi-arid natural grasslands. The findings of this study would facilitate the simulation of ecosystem C and N cycling in the semi-arid grasslands in northern China.展开更多
Soil erosion can cause considerable effect on global natural resources and eco-environment. In the paper, the CENTURY model has been used to simulate soil erosion in Xilin Gol Grassland of Inner Mongolia. The results ...Soil erosion can cause considerable effect on global natural resources and eco-environment. In the paper, the CENTURY model has been used to simulate soil erosion in Xilin Gol Grassland of Inner Mongolia. The results showed before the 1960s, the soil erosion amount was over 2 kg /m2.a in grassland ecosystem in the study area because no trees had been planted. But after the 1960s the mean annual accumulator C lost from soil organic matter due to soil erosion was only 0.3 kg /m2.a in forest ecosystem. So afforestation has exerted notable effect on decreasing soil erosion amount in Xilin Gol Grassland.展开更多
Construction of artificial grassland is a key factor to solve the shortage of grass and forage balance in cold and semi-arid areas of high plateau,and it is the key measure to ensure the sustainable development of gra...Construction of artificial grassland is a key factor to solve the shortage of grass and forage balance in cold and semi-arid areas of high plateau,and it is the key measure to ensure the sustainable development of grassland animal husbandry in this area. At present,the artificial grassland construction is neither reasonable nor scientific,which restricts the healthy and rapid development of artificial grassland in the cold and semi-arid areas of high plateau. In this research,with Naqu Area in Tibet as a case,problems and current status in construction process of artificial grassland are analyzed in cold and semi-arid areas of high plateau. Suitable artificial forage species in Nagqu are elaborated,and recommendations for the construction and development of artificial grassland are discussed.展开更多
基金Supported by Project of Agricultural Research Project of Guizhou Province (QKHZ [2010] No.3045)Special Fund of Guizhou Academy of Agricultural Sciences (QNKYZX [2011] No.021)"Twelfth Five-Year" National Science and Technology Support Program (2011BAD17B03)~~
文摘[Objective] This study aimed to investigate the influences of grazing and fencing on grassland productivity and carrying capacity of subtropical natural warmtemperature tussock. [Method] With the natural warm temperature tussock in Longli County of Guizhou Province as study area, monthly, seasonal and annual dynamics of grassland productivity were investigate continuously during 2010 -2012, and the data were analyzed. [Result] Under grazing and fencing conditions, grassland present biomass and forage growth of warm temperature tussock in Longli County of Guizhou Province both increased first and decreased, reaching the maximum from August to October. Fencing significantly improved the productivity of natural grassland but had little effect on the vegetation composition. [Conclusion] From the perspective of grass-livestock balance, the suitable stocking capacity of warm-temperature tussock in the central region of Guizhou Province was 3.45 -4.66 sheep/hm2 , which has high ecological efficiency and can be borne by farmers and herdsmen.
基金supported by the National Basic Research Program of China (2014CB138803)the National Natural Science Foundation of China (31570451)the Program for Changjiang Scholars and Innovative Research Team in University (IRT1108)
文摘With increasingly intensifying degradation of natural grasslands and rapidly increasing demand of high quality forages, natural grasslands in China have been converted into planted grasslands at an unprecedented rate and the magnitude of the conversion in Inner Mongolia is among the national highest where the areal extent of planted grasslands ranks the second in China. Such land-use changes(i.e., converting natural grasslands into planted grasslands) can significantly affect carbon stocks and carbon emissions in grassland ecosystems. In this study, we analyzed the effects of converting natural grasslands into planted grasslands(including Medicago sativa, Elymus cylindricus, and M. sativa+E. cylindricus) on ecosystem respiration(F(eco)) in Inner Mongolia of China. Diurnal F(eco) and its components(i.e., total soil respiration(F(ts)), soil heterotrophic respiration(F(sh)) and vegetation autotrophic respiration(F(va))) were measured in 2012(27 July to 5 August) and 2013(18 July to 25 July) in the natural and planted grasslands. Meteorological data, aboveground vegetation data and soil data were simultaneously collected to analyze the relationships between respiration fluxes and environmental factors in those grasslands. In 2012, the daily mean F(eco) in the M. sativa grassland was higher than that in the natural grassland, and the daily mean F(va) was higher in all planted grasslands(i.e., M. sativa, E. cylindricus, and M. sativa+E. cylindricus) than in the natural grassland. In contrast, the daily mean F(ts) and F(sh) were lower in all planted grasslands than in the natural grassland. In 2013, the daily mean F(eco), F(ts) and F(va) in all planted grasslands were higher than those in the natural grassland, and the daily mean F(sh) in the M. sativa+E. cylindricus grassland was higher than that in the natural grassland. The two-year experimental results suggested that the conversion of natural grasslands into planted grasslands can generally increase the F(eco) and the increase in F(eco) is more pronounced when the plantation becomes more mature. The results also indicated that F(sh) contributed more to F(eco) in the natural grassland whereas F(va) contributed more to F(eco) in the planted grasslands. The regression analyses show that climate factors(air temperature and relative humidity) and soil properties(soil organic matter, soil temperature, and soil moisture) strongly affected respiration fluxes in all grasslands. However, our observation period was admittedly too short. To fully understand the effects of such land-use changes(i.e., converting natural grasslands into planted grasslands) on respiration fluxes, longer-term observations are badly needed.
基金funded by CONICET(Consejo Nacional de Investigaciones Científicas y Técnicas)and SGCyT(Secretaría General de Ciencia y Tecnología,Universidad Nacional del Sur,Argentina).
文摘Livestock grazing has a significant impact on natural grasslands,with approximately one-third of the world’s land area dedicated to this industry.Around 20%of global grasslands are highly degraded due to overgrazing,affecting their productivity and conservation capacity.Best practices are required to ensure sustainable livestock production that supports biodiversity.The Intermediate Disturbance Hypothesis(IDH)suggests that environments with moderate levels of disturbance exhibit a higher species diversity.Moderate grazing can reduce the dominance of certain species,thereby enhancing plant diversity.However,concerns arise regarding the increase of exotic and unpalatable species under moderate grazing levels,complicating grassland conservation efforts.The impact of livestock grazing on the functional structure of grasslands depends on factors such as grazing intensity,livestock species,and environmental conditions.Variations in grazing intensity may increase specific and functional diversity under moderate grazing,potentially masking the presence of invasive exotic species.In the Austral Pampas(Pampean phytogeographic province,Buenos Aires,Argentina),grasslands face various pressures from domestic livestock grazing that endanger their integrity if not properly managed.Therefore,our study aims to investigate potential differences in species richness and diversity,functional diversity,exotic plant abundance,and the number and distribution of plant functional groups across varying grazing intensities.The IDH is utilized as a tool to regulate livestock pressure for grassland conservation.Species and functional diversity indices were used to assess the impact of grazing on grassland diversity.Moderate grazing increased species and functional diversity,while intensively grazed or ungrazed areas showed reduced diversity.Livestock presence influenced the balance between native and exotic plants,with ungrazed areas having higher native plant abundance and grazed areas exhibiting higher exotic plant abundance.Grazing also influenced the composition of functional groups,with grazing-avoiding species being more prevalent in heavily grazed areas.Principal Component Analysis revealed a clear association between vegetation composition and livestock grazing intensity.These findings offer valuable insights into effectively managing grazing intensity for biodiversity conservation purposes.
基金Sponsored by National Natural Science Foundation of China(31360201,91225301,91425301)
文摘Taking natural grassland on the northern slope of the Qilian Mountain for example, this paper investigated and compared aboveground and belowground biomass of grassland in multi-year enclosure(20 years), one-year enclosure, control areas(natural grazing areas). The results showed that coverage and height of the enclosure sample plots were significantly higher than that of natural grazing area(P <0.05); mean aboveground biomass of grassland: multi-year enclosure(316.58 g/m^2) > one-year enclosure area(299.07 g/m^2) > multi-year enclosure control area(254.39 g/m^2) > one-year enclosure control area(187.37 g/m^2); belowground biomass: multi-year enclosure(2,906.90 g/m^2) > one-year enclosure area(2,587.26 g/m^2) > multi-year enclosure control area(2,378.93 g/m^2) > one-year enclosure control area(2,029.17 g/m^2); mean aboveground biomass of natural grassland was 263.60 g/m^2, mean belowground biomass 2,225.56 g/m^2; ratio of belowground biomass to aboveground biomass varied between 6.79 and 12.90, distribution of belowground biomass and aboveground biomass in each plot showed significant differences(P <0.05). Enclosure was favorable for improving the coverage and biomass of natural grassland plant communities in the Qilian Mountains.
文摘This on-farm study was conducted in Zamfara reserve of north western Nigeria between July, 2002 and June, 2003 to assess feed intake and liveweight of 12 indigenous Red Sokoto castrated bucks, separated into two groups of six, supplemented and nonsupplemented respectively. The nonsupplemented group grazed natural pasture and crop stubble of crop fields, whereas the supplemented group grazed natural pasture, crop stubbles and received concentrate supplementation. Concentrate supplement (wheat offal) was fed at 1% of the metabolic weight of the animals which corresponds to the mean of the farmers offer. The total faecal collection method and grab samples of feed were used to estimate total intake of dry matter (DM), organic matter (OM), crude protein (CP) and metabolizable energy (ME). Liveweight of the animal was recorded at five weekly intervals. Results of the study indicated that nutrients intake of supplemented animals were generally higher than those of the nonsupplemented group, but not significantly different (P 〉 0.05). However, it was observed that supplementation significantly (P 〈 0.05) affected the liveweight of the supplemented bucks during early dry season in December, During this period feed became more available to the grazing animals from crop residues. It was therefore concluded that supplementation with wheat offal at 1% metabolic weight may not be enough to counteract weight loss of grazing goats during the other periods of dry season in this environment.
文摘In order to increase the productivity of grassland animal husbandry,reduce natural disasters,curb grassland degradation and solve some problems of animal husbandry development in Inner Mongolia,we should actively develop feed shrubs.Forage forests can supplement the shortage of feed caused by seasonal difference and natural disasters in natural grasslands in winter and spring,solve the difficulties in storage and transportation of feed and shortage of funds,regulate the climate,improve the soil fertility,proof wind and fix sand,thereby promoting the benign cycle of grassland ecology.In the natural grasslands of Inner Mongolia,shrubs or small arbors such as Caragana microphylla,Caragana korshinskii Kom,Hedysarum scoparium Fisch et May,Hedysarum mongolicum Turcz,Lespedeza bicolor Turcz,Hippophae rhamnoides Linn,Ulmaceae macrocarpa Hance and Kochia prostrata(L.)Schrad can be used to create forage forests.Scientific research should be actively carried out on the harvesting and cutting period,planting scale,feeding methods and breeding of improved varieties of forage forests.
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05060103)National Natural Science Foundation of China(No.41105117)State Key Laboratory of Forest and Soil Ecology(No.LFSE2013-06)
文摘The semi-arid grasslands in Inner Mongolia, China have been degraded by long-term grazing. A series of ecological restoration strategies have been implemented to improve grassland service. However, little is known about the effect of these ecological restoration practices on soil carbon and nitrogen storage. In this study, characteristics of vegetation and soil properties under continued grazing and exclusion of livestock for six years due to a nationwide conservation program—′Returning Grazing Lands to Grasslands(RGLG)′ were examined in semi-arid Hulun Buir grassland in Inner Mongolia, China. The results show that removal of grazing for six years resulted in a significant recovery in vegetation with higher above and below-ground biomass, but a lower soil bulk density and pH value. After six years of grazing exclusion, soil organic C and total N storage increased by 13.9% and 17.1%, respectively, which could be partly explained by decreased loss and increased input of C and N to soil. The effects of grazing exclusion on soil C and N concentration and storage primarily occurred in the upper soil depths. The results indicate that removal of grazing pressure within the RGLG program was an effective restoration approach to control grassland degradation in this region. However, more comprehensive studies are needed to evaluate the effectiveness of the RGLG program and to improve the management strategies for grassland restoration in this area.
基金financially supported by the National Basic Research Program of China(2014CB138806)the Natural Science Fund Project of Inner Mongolia(2015ZD02)+2 种基金the International Science and Technology Cooperation Program of China(2013DFR30760)the National Scientific and Technical Support Program of China(2012BAD12B02)the Special Fund for Agro-scientific Research in the Public Interest(201303060)
文摘Mowing is an important land management practice for natural semi-arid regions. A growing body of empirical evidence shows that different mowing regimes affect the functioning of grassland ecosystems. However, the responses of plant functional traits to long-term mowing and their allometric scaling under long-term mowing are poorly understood. For a better understanding of the effects of mowing on grassland ecosystems, we analyzed the allometric traits of leaves and stems of Leymus chinensis (Trin.) Tzvel., a dominant grass species in eastern Eurasian temperate grassland, at different mowing intensities (no clipping, clipping once every two years, once a year and twice a year). Experiments were conducted on plots established over a decade ago in a typical steppe of Xilinhot, Inner Mongolia, China. Results showed that most of the functional traits of L. chinensis decreased with the increased mowing intensity. The responses of leaves and stems to long-term mowing were asymmetric, in which leaf traits were more stable than stem traits. Also significant allometric relationships were found among most of the plant functional traits under the four mowing treatments. Sensitive traits of L. chinensis (e.g. leaf length and stem length) were primary indicators associated with aboveground biomass decline under high mowing intensity. In conclusion, the allometric growth of different functional traits of L. chinensis varies with different long-term mowing practices, which is likely to be a strategy used by the plant to adapt to the mowing disturbances.
基金supported by the National Key Basic Research and Development Program of China (2016YFC0500703)the National Natural Science Foundation of China (31572452, 41573063, 31870438)
文摘The aboveground primary production is a major source of carbon(C) and nitrogen(N) pool and plays an important role in regulating the response of ecosystem and nutrient cycling to natural and anthropogenic disturbances. To explore the mechanisms underlying the effect of spring fire and topography on the aboveground biomass(AGB) and the soil C and N pool, we conducted a field experiment between April 2014 and August 2016 in a semi-arid grassland of northern China to examine the effects of slope and spring fire, and their potential interactions on the AGB and organic C and total N contents in different plant functional groups(C_3 grasses, C_4 grasses, forbs, Artemisia frigida plants, total grasses and total plants).The dynamics of AGB and the contents of organic C and N in the plants were examined in the burned and unburned plots on different slope positions(upper and lower). There were differences in the total AGB of all plants between the two slope positions. The AGB of grasses was higher on the lower slope than on the upper slope in July. On the lower slope, spring fire marginally or significantly increased the AGB of C_3 grasses, forbs, total grasses and total plants in June and August, but decreased the AGB of C_4 grasses and A.frigida plants from June to August. On the upper slope, however, spring fire significantly increased the AGB of forbs in June, the AGB of C_3 grasses and total grasses in July, and the AGB of forbs and C_4 grasses in August. Spring fire exhibited no significant effect on the total AGB of all plants on the lower and upper slopes in 2014 and 2015. In 2016, the total AGB in the burned plots showed a decreasing trend after fire burning compared with the unburned plots. The different plant functional groups had different responses to slope positions in terms of organic C and N contents in the plants. The lower and upper slopes differed with respect to the organic C and N contents of C_3 grasses, C_4 grasses, total grasses, forbs, A. frigida plants and total plants in different growing months. Slope position and spring fire significantly interacted to affect the AGB and organic C and N contents of C_4 grasses and A. frigida plants. We observed the AGB and organic C and N contents in the plants in a temporal synchronized pattern. Spring fire affected the functional AGB on different slope positions, likely by altering the organic C and N contents and, therefore,it is an important process for C and N cycling in the semi-arid natural grasslands. The findings of this study would facilitate the simulation of ecosystem C and N cycling in the semi-arid grasslands in northern China.
基金Partly supported by Postdoctoral Foundation of China (No.24) and the National Natural Science Foundation of China (No. 39900084)
文摘Soil erosion can cause considerable effect on global natural resources and eco-environment. In the paper, the CENTURY model has been used to simulate soil erosion in Xilin Gol Grassland of Inner Mongolia. The results showed before the 1960s, the soil erosion amount was over 2 kg /m2.a in grassland ecosystem in the study area because no trees had been planted. But after the 1960s the mean annual accumulator C lost from soil organic matter due to soil erosion was only 0.3 kg /m2.a in forest ecosystem. So afforestation has exerted notable effect on decreasing soil erosion amount in Xilin Gol Grassland.
基金Supported by Spark Project of the Ministry of Science and Technology(2015GA840007)National Forage Industry Technology System Fund Project of the Ministry of Agriculture for Tibet Experiment Station(CARS-35)National Nonprofit Industry Research Project(201203006)
文摘Construction of artificial grassland is a key factor to solve the shortage of grass and forage balance in cold and semi-arid areas of high plateau,and it is the key measure to ensure the sustainable development of grassland animal husbandry in this area. At present,the artificial grassland construction is neither reasonable nor scientific,which restricts the healthy and rapid development of artificial grassland in the cold and semi-arid areas of high plateau. In this research,with Naqu Area in Tibet as a case,problems and current status in construction process of artificial grassland are analyzed in cold and semi-arid areas of high plateau. Suitable artificial forage species in Nagqu are elaborated,and recommendations for the construction and development of artificial grassland are discussed.