期刊文献+
共找到2,897篇文章
< 1 2 145 >
每页显示 20 50 100
Impacts of reduced wind speed on physiology and ecosystem carbon flux of a semi-arid steppe ecosystem 被引量:1
1
作者 DongYan Jin Qiong Gao +1 位作者 YaLin Wang Li Xu 《Research in Cold and Arid Regions》 CSCD 2014年第6期556-565,共10页
Decreasing wind speed is one aspect of global climate change as well as global warming, and has become a new research orientation in recent decades. The decrease is especially evident in places with frequent perennial... Decreasing wind speed is one aspect of global climate change as well as global warming, and has become a new research orientation in recent decades. The decrease is especially evident in places with frequent perennially high wind speeds. We simulated decreased wind speed by using a steel-sheet wind shield in a temperate grassland in Inner Mongolia to examine the changes in physical environmental variables, as well as their impacts on the photosynthesis of grass leaves and net ecosystem exchange (NEE). We then used models to calculate the variation of boundary layer conductance (BLC) and its impact on leaf photosynthesis, and this allowed us to separate the direct effects of wind speed reduction on leaf photo- synthesis (BLC) from the indirect ones (via soil moisture balance). The results showed that reduced wind speed primarily resulted in higher moisture and temperature in soil, and indirectly affected net assimilation and water use efficiency of the prevalent bunch grass Stipa krylovii. Moreover, the wind-sheltered plant community had a stronger ability to sequester carbon than did the wind-exposed community during the growing season. 展开更多
关键词 wind speed reduction boundary layer conductance PHOTOSYNTHESIS net ecosystem exchange semi-arid steppe
下载PDF
Effects and mechanism of freeze-thawing cycles on the soil N2O fluxes in the temperate semi-arid steppe 被引量:4
2
作者 Liqin Wang Yuchun Qi +4 位作者 Yunshe Dong qin Peng Shufang Guo Yunlong He Zhaolin Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第6期192-201,共10页
High nitrous oxide (N20) emissions during freeze-thawing period (FFP) have been observed in many different ecosystems. However, the knowledge about the dynamic of soil N20 emissions and its main driving mechanism ... High nitrous oxide (N20) emissions during freeze-thawing period (FFP) have been observed in many different ecosystems. However, the knowledge about the dynamic of soil N20 emissions and its main driving mechanism during the freeze-thawing processes in grassland ecosystem is still limited. An in-situ experiment was conducted during the FTP on the sites with 0 and 15% surplus of the average rainfall and two levels of N addition (0,10 g N/(m2-year)) during growing season (marked as WON0, WISN0, WONI0, WISNI0, respectively) to explore the effects of water and N background on soil N20 emissions during FTPs and the relationship between soil N20 emissions and environmental factors. The results indicated that water and N treatments conducted during growing season did not show significant effect on the N20 effluxes of FTP, but the soil mineral N contents of WONI0 treatment were significantly higher than those of WON0, WI5N0, WI5NI0 treatments (p 〈 0.05). The soil PLFA concentrations of microbial groups monitored during 2015 spring freeze-thawing period (2015S-FTP) were lower than those during winter freeze-thawing period of 2014 (2014W-FTP), while cumulative soil N20 emissions of 2015S-FTP were higher than those of 2014W-FFP. The correlations between soil N20 effluxes and most of the measured environmental factors were insignificant, multiple stepwise regression analysis indicated that the soil temperature, soil NH$-N content and air temperature were the major environmental factors which significantly influenced the N20 effluxes during 2014W-FTP, and air temperature and son water content were the significant influencing factors during 2015S-FTP. 展开更多
关键词 Temperate semi-arid steppeNitrous oxideFreeze-thawing periodWater and nitrogen addition
原文传递
Impact of nitrogen addition on plant community in a semi-arid temperate steppe in China 被引量:20
3
作者 Ling SONG XueMei BAO +1 位作者 XueJun LIU FuSuo ZHANG 《Journal of Arid Land》 SCIE 2012年第1期3-10,共8页
Increased nitrogen (N) deposition will often lead to a decline in species richness in grassland ecosystems but the shifts in functional groups and plant traits are still poorly understood in China. A field experimen... Increased nitrogen (N) deposition will often lead to a decline in species richness in grassland ecosystems but the shifts in functional groups and plant traits are still poorly understood in China. A field experiment was conducted at Duolun, Inner Mongolia, China, to investigate the effects of N addition on a temperate steppe ecosystem. Six N levels (0, 3, 6, 12, 24, and 48 g N/(m2-a)) were added as three applications per year from 2005 to 2010. Enhanced N deposition, even as little as 3 g N/(m2.a) above ambient N deposition (1.2 g N/(m2.a)), led to a decline in species richness of the whole community. Increasing N addition can significantly stimulate aboveground biomass of perennial bunchgrasses (PB) but decrease perennial forbs (PF), and induce a slight change in the biomass of shrubs and semi-shrubs (SS). The biomass of annuals (AS) and perennial rhizome grasses (PR) accounts for only a small part of the total biomass. Species richness of PF decreased significantly with increasing N addition rate but there was a little change in the other functional groups. PB, as the dominant functional group, has a relatively higher height than others. Differences in the response of each functional group to N addition have site-specific and species-specific characteristics. We initially infer that N enrichment stimulated the growth of PB, which further suppressed the growth of other functional groups. 展开更多
关键词 nitrogen addition species richness BIOMASS functional group temperate steppe Duolun Inner Mongolia
下载PDF
Differential responses of short-term soil respiration dynamics to the experimental addition of nitrogen and water in the temperate semi-arid steppe of Inner Mongolia, China 被引量:19
4
作者 Yuchun Qi Xinchao Liu +5 位作者 Yunshe Dong Qin Peng Yating He Liangjie Sun Junqiang Jia Congcong Cao 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第4期834-845,共12页
We examined the effects of simulated rainfall and increasing N supply of different levels on CO2 pulse emission from typical Inner Mongolian steppe soil using the static opaque chamber technique, respectively in a dry... We examined the effects of simulated rainfall and increasing N supply of different levels on CO2 pulse emission from typical Inner Mongolian steppe soil using the static opaque chamber technique, respectively in a dry June and a rainy August. The treatments included NH4NO3 additions at rates of 0, 5, 10, and 20 g N/(m2.year) with or without water. Immediately after the experimental simulated rainfall events, the CO2 effluxes in the watering plots without N addition (WCK) increased greatly and reached the maximum value at 2 hr. However, the efflux level reverted to the background level within 48 hr. The cumulative CO2 effluxes in the soil ranged from 5.60 to 6.49 g C/m2 over 48 hr after a single water application, thus showing an increase of approximately 148.64% and 48.36% in the efftuxes during both observation periods. By contrast, the addition of different N levels without water addition did not result in a significant change in soil respiration in the short term. Two-way ANOVA showed that the effects of the interaction between water and N addition were insignificant in short-term soil COz efftuxes in the soil. The cumulative soil CO2 fluxes of different treatments over 48 hr accounted for approximately 5.34% to 6.91% and 2.36% to 2.93% of annual C emission in both experimental periods. These results stress the need for improving the sampling frequency after rainfall in future studies to ensure more accurate evaluation of the grassland C emission contribution. 展开更多
关键词 soil respiration short-term response N addition simulated rainfall temperate steppe
原文传递
Litter decomposition and C and N dynamics as affected by N additions in a semi-arid temperate steppe, Inner Mongolia of China 被引量:17
5
作者 Qin PENG YuChun QI +7 位作者 YunShe DONG YaTing HE ShengSheng XIAO XinChao LIU LiangJie SUN JunQiang JIA ShuFang GUO CongCong CAO 《Journal of Arid Land》 SCIE CSCD 2014年第4期432-444,共13页
Litter decomposition is the fundamental process in nutrient cycling and soil carbon(C) sequestration in terrestrial ecosystems. The global-wide increase in nitrogen(N) inputs is expected to alter litter decomposit... Litter decomposition is the fundamental process in nutrient cycling and soil carbon(C) sequestration in terrestrial ecosystems. The global-wide increase in nitrogen(N) inputs is expected to alter litter decomposition and,ultimately, affect ecosystem C storage and nutrient status. Temperate grassland ecosystems in China are usually N-deficient and particularly sensitive to the changes in exogenous N additions. In this paper, we conducted a 1,200-day in situ experiment in a typical semi-arid temperate steppe in Inner Mongolia to investigate the litter decomposition as well as the dynamics of litter C and N concentrations under three N addition levels(low N with 50 kg N/(hm2?a)(LN), medium N with 100 kg N/(hm2?a)(MN), and high N with 200 kg N/(hm2?a)(HN)) and three N addition forms(ammonium-N-based with 100 kg N/(hm2?a) as ammonium sulfate(AS), nitrate-N-based with 100 kg N/(hm2?a) as sodium nitrate(SN), and mixed-N-based with 100 kg N/(hm2?a) as calcium ammonium nitrate(CAN)) compared to control with no N addition(CK). The results indicated that the litter mass remaining in all N treatments exhibited a similar decomposition pattern: fast decomposition within the initial 120 days, followed by a relatively slow decomposition in the remaining observation period(120–1,200 days). The decomposition pattern in each treatment was fitted well in two split-phase models, namely, a single exponential decay model in phase I(〈398 days) and a linear decay function in phase II(≥398 days). The three N addition levels exerted insignificant effects on litter decomposition in the early stages(〈398 days, phase I; P〉0.05). However, MN and HN treatments inhibited litter mass loss after 398 and 746 days, respectively(P〈0.05). AS and SN treatments exerted similar effects on litter mass remaining during the entire decomposition period(P〉0.05). The effects of these two N addition forms differed greatly from those of CAN after 746 and 1,053 days, respectively(P〈0.05). During the decomposition period, N concentrations in the decomposing litter increased whereas C concentrations decreased, which also led to an exponential decrease in litter C:N ratios in all treatments. No significant effects were induced by N addition levels and forms on litter C and N concentrations(P〉0.05). Our results indicated that exogenous N additions could exhibit neutral or inhibitory effects on litter decomposition, and the inhibitory effects of N additions on litter decomposition in the final decay stages are not caused by the changes in the chemical qualities of the litter, such as endogenous N and C concentrations. These results will provide an important data basis for the simulation and prediction of C cycle processes in future N-deposition scenarios. 展开更多
关键词 litter decomposition N deposition N level N form C sequestration semi-arid temperate grassland
下载PDF
Responses of plant diversity and soil microorganism diversity to nitrogen addition in the desert steppe,China
6
作者 YE He HONG Mei +4 位作者 XU Xuehui LIANG Zhiwei JIANG Na TU Nare WU Zhendan 《Journal of Arid Land》 SCIE CSCD 2024年第3期447-459,共13页
Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attentio... Nitrogen(N)deposition is a significant aspect of global change and poses a threat to terrestrial biodiversity.The impact of plant-soil microbe relationships to N deposition has recently attracted considerable attention.Soil microorganisms have been proven to provide nutrients for specific plant growth,especially in nutrient-poor desert steppe ecosystems.However,the effects of N deposition on plant-soil microbial community interactions in such ecosystems remain poorly understood.To investigate these effects,we conducted a 6-year N-addition field experiment in a Stipa breviflora Griseb.desert steppe in Inner Mongolia Autonomous Region,China.Four N treatment levels(N0,N30,N50,and N100,corresponding to 0,30,50,and 100 kg N/(hm2•a),respectively)were applied to simulate atmospheric N deposition.The results showed that N deposition did not significantly affect the aboveground biomass of desert steppe plants.N deposition did not significantly reduce the alfa-diversity of plant and microbial communities in the desert steppe,and low and mediate N additions(N30 and N50)had a promoting effect on them.The variation pattern of plant Shannon index was consistent with that of the soil bacterial Chao1 index.N deposition significantly affected the beta-diversity of plants and soil bacteria,but did not significantly affect fungal communities.In conclusion,N deposition led to co-evolution between desert steppe plants and soil bacterial communities,while fungal communities exhibited strong stability and did not undergo significant changes.These findings help clarify atmospheric N deposition effects on the ecological health and function of the desert steppe. 展开更多
关键词 soil microorganisms plant-microbial community interaction plant diversity nitrogen deposition desert steppe
下载PDF
Effects of long-term fencing on soil microbial community structure and function in the desert steppe,China
7
作者 PAN Yaqing KANG Peng +2 位作者 QU Xuan RAN Yichao LI Xinrong 《Journal of Arid Land》 SCIE CSCD 2024年第3期431-446,共16页
One of the goals of grazing management in the desert steppe is to improve its ecosystem.However,relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management.In this... One of the goals of grazing management in the desert steppe is to improve its ecosystem.However,relatively little is known about soil microbe communities in the desert steppe ecosystem under grazing management.In this study,we investigated the diversity and aboveground biomass of Caragana korshinskii Kom.shrub communities in long-term fencing and grazing areas,combined with an analysis of soil physical-chemical properties and genomics,with the aim of understanding how fence management affects plant-soil-microbial inter-relationships in the desert steppe,China.The results showed that fence management(exclosure)increased plant diversity and aboveground biomass in C.korshinskii shrub area and effectively enhanced soil organic carbon(233.94%),available nitrogen(87.77%),and available phosphorus(53.67%)contents.As well,the Shannon indices of soil bacteria and fungi were greater in the fenced plot.Plant-soil changes profoundly affected the alpha-and beta-diversity of soil bacteria.Fence management also altered the soil microbial community structure,significantly increasing the relative abundances of Acidobacteriota(5.31%-8.99%),Chloroflexi(3.99%-5.58%),and Glomeromycota(1.37%-3.28%).The soil bacterial-fungal co-occurrence networks under fence management had higher complexity and connectivity.Based on functional predictions,fence management significantly increased the relative abundance of bacteria with nitrification and nitrate reduction functions and decreased the relative abundance of bacteria with nitrate and nitrite respiration functions.The relative abundances of ecologically functional fungi with arbuscular mycorrhizal fungi,ectomycorrhizal fungi,and saprotrophs also significantly increased under fence management.In addition,the differential functional groups of bacteria and fungi were closely related to plant-soil changes.The results of this study have significant positive implications for the ecological restoration and reconstruction of dry desert steppe and similar areas. 展开更多
关键词 desert steppe fence management Caragana korshinskii soil physical-chemical property soil microorganism
下载PDF
Benefits and ecological restoration implications of hanging grass fences in Mongolian desert steppe
8
作者 MIAO Jiamin LI Shengyu +4 位作者 XU Xinwen LIU Guojun WANG Haifeng FAN Jinglong Khaulanbek AKHMADI 《Journal of Arid Land》 SCIE CSCD 2024年第11期1541-1561,共21页
Tumbleweeds participate in a common seasonal biological process in temperate grasslands,creating hanging grass fences during the grass-withering season that result in distinct ecological phenomena.In this study,we add... Tumbleweeds participate in a common seasonal biological process in temperate grasslands,creating hanging grass fences during the grass-withering season that result in distinct ecological phenomena.In this study,we addressed the urgent need to understand and restore the degraded desert steppe in Central Mongolia,particularly considering the observed vegetation edge effects around hanging grass fences.Using field surveys conducted in 2019 and 2021 in the severely degraded desert steppe of Central Mongolia,we assessed vegetation parameters and soil physical and chemical properties influenced by hanging grass fences and identified the key environmental factors affecting vegetation changes.The results indicate that the edge effects of hanging grass fences led to changes in species distributions,resulting in significant differences in species composition between the desert steppe's interior and edge areas.Vegetation parameters and soil physical and chemical properties exhibited nonlinear responses to the edge effects of hanging grass fences,with changes in vegetation coverage,aboveground biomass,and soil sand content peaking at 26.5,16.5,and 6.5 m on the leeward side of hanging grass fences,respectively.In the absence of sand dune formation,the accumulation of soil organic carbon and available potassium were identified as crucial factors driving species composition and increasing vegetation coverage.Changes in species composition and plant density were primarily influenced by soil sand content,electrical conductivity,and sand accumulation thickness.These findings suggest that hanging grass fences have the potential to alter vegetation habitats,promote vegetation growth,and control soil erosion in the degraded desert steppe of Central Mongolia.Therefore,in the degraded desert steppe,the restoration potential of hanging grass fences during the enclosure process should be fully considered. 展开更多
关键词 hanging grass fences edge effects vegetation recovery enclosure treatment degraded desert steppe Central Mongolia
下载PDF
Features on N/P ratio of plants with different functional groups between two types of steppe in semi-arid area
9
作者 YueDan Zhao XingDong He +4 位作者 Lei Chen XinFeng Ding MengQi Li PingYi Xu YuBao Gao 《Research in Cold and Arid Regions》 CSCD 2019年第5期371-381,共11页
The differences in nitrogen/phosphorus(N/P)ratios of different functional groups in ecology are more helpful in explaining species competition and community dynamics.Based on the functional groups of plant growth type... The differences in nitrogen/phosphorus(N/P)ratios of different functional groups in ecology are more helpful in explaining species competition and community dynamics.Based on the functional groups of plant growth type,carbon metabolism pathway,root type and phylogenetic type,we analyzed characteristics of leaf N/P ratios of 77 species in Sanggendalai(typical grassland zone)of Zhenglan Banner,Inner Mongolia,China and 91 species in the Habahu National Nature Reserve(desertified grassland zone)in Yanchi County of Ningxia,China.The results show that the N/P ratio(16.91)of C3 plants in the desertified steppe was significantly larger than that(12.72)in the typical steppe,but there was no significant difference between the N/P ratios of C4 plants in the two zones.There was no significant difference in N/P ratios between C3 plants and C4 plants in the same zone.Similarly,the N/P ratio(16.60)of dicotyledons in desertified steppe were significantly higher than that(12.98)in typical steppe,while differences in N/P ratios between monocotyledonous plants of the two zones was not significant,and there existed no significant difference in N/P ratios between dicotyledonous and monocotyledonous plants in the same zone.The N/P ratio had significant difference between gramineous and non-gramineous plants in the typical steppe but not in the desertified steppe,but there existed no significant difference in N/P ratios among different root types of perennial herbaceous plants in the same type of steppe or between two types of steppe.Thus,different features on the N/P ratios of C3 plants and dicotyledonous plants between typical steppe and desertified steppe may lead to different growth status of plants,and the N/P ratio stoichiometric of the same plant functional group may be a foundation of the changes of a plant community. 展开更多
关键词 semi-arid region PLANT N/P ratio PLANT functional GROUPS desertified steppe TYPICAL steppe
下载PDF
Stipa tenacissima Does not Affect the Foliar δ^(13)C and δ^(15)N of Introduced Shrub Seedlings in a Mediterranean Semi-arid Steppe
10
作者 Fernando T.Maestre Susana Bautista Jordi Cortina 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2006年第8期897-905,共9页
Recent studies have shown that the tussock grass Stipa tenacissima L. facilitates the establishment of late-successional shrubs, in what constitutes the first documented case of facilitation of woody plants by grasses... Recent studies have shown that the tussock grass Stipa tenacissima L. facilitates the establishment of late-successional shrubs, in what constitutes the first documented case of facilitation of woody plants by grasses. With the aim of increasing our knowledge of this interaction, in the present study we investigated the effects of S. tenacissima on the foliar δ13C, δ15N, nitrogen concentration, and carbon : nitrogen ratio of introduced seedlings of Pistacia lentiscus L., Quercus coccifera L., and Medicago arborea L. in a semi-arid Mediterranean steppe. Six months after planting, the values of δ13C ranged between -26.9‰ and -29.6‰, whereas those of δ15N ranged between -1.9‰ and 2.7‰. The foliar C : N ratio ranged between 10.7 and 53.5, and the nitrogen concentration ranged between 1.0% and 4.4%. We found no significant effect of the microsite provided by S. tenacissima on these variables in any of the species evaluated. The values of δ13C were negatively correlated with predawn water potentials in M. arborea and were positively correlated with relative growth rate in Q. coccifera. The values of δ15N were positively correlated with the biomass allocation to roots in the latter species. The present results suggest that the modification of environmental conditions in the are surrounding S. tenacissima was not strong enough to modify the foliar isotopic and nitrogen concentration of shrubs during the early stages after planting. 展开更多
关键词 FACILITATION Medicago arborea Pistacia lentiscus Quercus coccifera stable isotopes steppe Stipa tenacissima.
原文传递
Effects of defoliation timing on plant nutrient resorption and hay production in a semi-arid steppe
11
作者 Tongrui Zhang Frank Yonghong Li +4 位作者 Hao Wang Lin Wu Chunjun Shi Yanlong Li Jie Hu 《Journal of Plant Ecology》 SCIE CSCD 2021年第1期44-57,共14页
Aims Nutrient resorption is a key plant nutrient conservation strategy,and its response to environmental and management changes is linked to nutrient cycling and production of ecosystems.Defoliation is a major pathway... Aims Nutrient resorption is a key plant nutrient conservation strategy,and its response to environmental and management changes is linked to nutrient cycling and production of ecosystems.Defoliation is a major pathway of mowing affecting plant nutrient resorption and production in grasslands,while the effect of defoliation timing has not been unexplored.The aim of this study was to examine the effect of defoliation timing on plant nutrient resorption and production in a steppe ecosystem.Methods We conducted a field experiment in a semi-arid steppe of Inner Mongolia including four treatments:early defoliation,peak defoliation,late defoliation and non-defoliation.We measured plant nitrogen(N)and phosphorus(P)resorption at species and community levels,and quantified plant N and P fluxes in resorption,litter return and hay output.Plant production in the mowing system was assessed by hay production and quality.Important Findings Peak and late defoliation,but not early defoliation,reduced plant community N and P resorption proficiency;and late defoliation reduced N resorption efficiency but not P resorption efficiency.Peak and late defoliation,but not early defoliation,reduced plant nutrient resorption flux and litter nutrient return flux.Defoliation timing did not alter root nutrient accumulation as nutrient uptake from soil likely compensated the deficit of nutrient resorption.Peak defoliation had the highest hay production and quality,while early defoliation had the lowest.Our results provide new insights into the nutrient cycling in mowing grassland,and imply that the mowing timing can be used as a tool to mediate the balanee between conservation and production of steppes,and the early mowing before plant peak biomass period is recommended for conservation of the steppes while keeping sustainable pastoral production. 展开更多
关键词 defoliation timing nutrient resorption hay production nutrient conservation MOWING temperate steppe
原文传递
Studies on Transferrin and Posttremsferr Polymorphism and Their Relationship with Performances in Red Steppe 被引量:6
12
作者 张永宏 潘英树 +5 位作者 高妍 马倩 刘同欣 秦莹 赵志辉 张嘉保 《Agricultural Science & Technology》 CAS 2008年第5期109-112,共4页
[Objective] The aim of this study was to investigate the correlation between blood protein polymorphism of red steppe and its performance.[Method]Two blood protein polymorphic loci were detected in transferring(Tf)and... [Objective] The aim of this study was to investigate the correlation between blood protein polymorphism of red steppe and its performance.[Method]Two blood protein polymorphic loci were detected in transferring(Tf)and posttremsferr(Ptf)from thirteen red steppes and eighteen hybrid of limousin and red steppe by polyacrylamide gel electrophoresis.[Result]Tf and Ptf were controlled by three and two alleles respectively.[Conclusion]The variance analysis of blood protein polymorphic loci and its performance indicates that two protein loci have a positive or negative correlation with some traits of red steppe and the improved limousin cattle population. 展开更多
关键词 RED steppe Transferring Posttremsferr POLYMORPHISM performance
下载PDF
Effects of Irrigation on Nitrous Oxide,Methane and Carbon Dioxide Fluxes in an Inner Mongolian Steppe 被引量:7
13
作者 刘春岩 Jirko HOLST +5 位作者 Nicolas BRGGEMANN Klaus BUTTERBACH-BAHL 姚志生 韩圣慧 韩兴国 郑循华 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第5期748-756,共9页
Increased precipitation during the vegetation periods was observed in and further predicted for Inner Mongolia. The changes in the associated soil moisture may affect the biosphere-atmosphere exchange of greenhouse ga... Increased precipitation during the vegetation periods was observed in and further predicted for Inner Mongolia. The changes in the associated soil moisture may affect the biosphere-atmosphere exchange of greenhouse gases. Therefore, we set up an irrigation experiment with one watered (W) and one unwatered plot (UW) at a winter-grazed Leymus chinensis-steppe site in the Xilin River catchment, Inner Mongolia. UW only received the natural precipitation of 2005 (129 mm), whereas W was additionally watered after the precipitation data of 1998 (in total 427 mm). In the 3-hour resolution, we determined nitrous oxide (N20), methane (CH4) and carbon dioxide (CO2) fluxes at both plots between May and September 2005, using a fully automated, chamber-based measuring system. N20 fluxes in the steppe were very low, with mean emissions (±s.e.) of 0.9-4-0.5 and 0.7-4-0.5 μg N m^-2 h^-1 at W and UW, respectively. The steppe soil always served as a CH4 sink, with mean fluxes of -24.1-4-3.9 and -31.1-4- 5.3 μg C m^-2 h^-1 at W and UW. Nighttime mean CO2 emissions were 82.6±8.7 and 26.3±1.7 mg C m^-2 h^-1 at W and UW, respectively, coinciding with an almost doubled aboveground plant biomass at W. Our results indicate that the ecosystem CO2 respiration responded sensitively to increased water input during the vegetation period, whereas the effects on CH4 and N2O fluxes were weak, most likely due to the high evapotranspiration and the lack of substrate for N2O producing processes. Based on our results, we hypothesize that with the gradual increase of summertime precipitation in Inner Mongolia, ecosystem CO2 respiration will be enhanced and CH4 uptake by the steppe soils will be lightly inhibited. 展开更多
关键词 nitrous oxide METHANE carbon dioxide semi-arid steppe IRRIGATION precipitation
下载PDF
Spatial-temporal Evolvement Characteristics of Climate Productivity for the Plants on Inner Mongolia Desert Steppe 被引量:5
14
作者 韩芳 苗百岭 +3 位作者 郭瑞清 李兴华 那日苏 王海 《Meteorological and Environmental Research》 CAS 2010年第5期76-79,共4页
Thornthwaite Memorial model and other statistic methods were used to calculate the climate-productivity of plants with the meteorological data from 1961 to 2007 at 9 stations distributed on Inner Mongolia desert stepp... Thornthwaite Memorial model and other statistic methods were used to calculate the climate-productivity of plants with the meteorological data from 1961 to 2007 at 9 stations distributed on Inner Mongolia desert steppe.The spatial and temporal variation characteristics of climate-productivity were analyzed by using the methods of the tendency rate of the climate trend,accumulative anomaly,and spatial difference and so on.The results showed that the climate-productivity kept linear increased trend over Inner Mongolia desert steppe in recent 47 years,but not significant.In spatial distribution,the climate-productivity reduced with the increased latitude.The climate-productivity in southwest part of Inner Mongolia desert steppe was growing while that in the southeast was reducing.The variation rate of the climate-productivity increased from the northwest part to the southeast part of Inner Mongolia desert steppe.In recent 47 years,the climate-productivity in southeast Jurh underwent the greatest decreasing extent,and the region was the sensitive area of the climate-productivity variation. 展开更多
关键词 Desert steppe Climate productivity Spatial-temporal distribution Variation rate China
下载PDF
Detecting Vegetation Fractional Coverage of Typical Steppe in Northern China Based on Multi-scale Remotely Sensed Data 被引量:15
15
作者 李晓兵 陈云浩 +1 位作者 史培军 陈晋 《Acta Botanica Sinica》 CSCD 2003年第10期1146-1156,共11页
One of the study objectives of global change is land use/cover change (LUCC) by using multiscale remotely sensed data on global and regional scale. In this paper, field sample, digital camera, Landsat-ETM+ (ETM+, Enha... One of the study objectives of global change is land use/cover change (LUCC) by using multiscale remotely sensed data on global and regional scale. In this paper, field sample, digital camera, Landsat-ETM+ (ETM+, Enhanced Thematic Mapper) image and the National Oceanic and Atmospheric Administration/the advanced very high resolution radiometer (NOAA/AVHRR) image were integrated to detect, simulate and analyze the vegetation fractional coverage of typical steppe in northern China. The results show: (1) Vegetation fractional coverage measured by digital camera is more precise than results measured by other methods. It can be used to validate other measuring results. (2) Vegetation fractional coverage measured by 1 m 2 field sample change fluctuantly for different observers and for different sample areas. In this experiment, the coverage is generally high compared with the result measured by digital camera, and the average absolute error is 9.92%, but two groups measure results, correlation coefficient r(2) = 0.89. (3) Three kinds of methods using remotely sensed data were adopted to simulate the vegetation fractional coverage. Average absolute errors of the vegetation fractional coverage, measured by ETM+ and NOAA, are respectively 7.03% and 7.83% compared with the result measured by digital camera. When NOAA pixel was decomposed by ETM+ pixels after geometrical registry, the average absolute errors measured by this method is 5.68% compared with the digital camera result. Correction coefficients of three results with digital camera result r(2) are respectively 0.78, 0.61 and 0.76. (4) The result of statistic model established by NOAA-NDVI (NDVI, Normalized Difference Vegetation Index) and the vegetation fractional coverage measured by digital camera show lower precision (r(2) = 0.65) than the result of statistic model established by ETM+-NDVI and digital camera coverage then converted to NOAA image (r(2) = 0.80). Pixel decomposability method improves the precision of measuring the vegetation fractional coverage on a large scale. This is a significant practice on scaling by using remotely sensed data. Integrated application of multi-scale remotely sensed data in earth observation will be an important approach to promoting measuring precision of ecological parameters. 展开更多
关键词 multi-scale remote sensing typical steppe vegetation fractional coverage
下载PDF
Influences of Family Ranches Management Mode on Plant Community Characteristic in Hulunber Meadow Steppe 被引量:1
16
作者 闫瑞瑞 卫智军 +5 位作者 杨桂霞 韩国栋 辛晓平 卢志红 斯琴毕力格 吴宏军 《Agricultural Science & Technology》 CAS 2013年第11期1664-1669,共6页
[Objective] The aim was to explore the management mode on optimal re-sources al ocation of family ranch in meadow steppe. [Method] Three double repre-sentative family ranches were selected in meadow steppe of Hulunber... [Objective] The aim was to explore the management mode on optimal re-sources al ocation of family ranch in meadow steppe. [Method] Three double repre-sentative family ranches were selected in meadow steppe of Hulunber Old Barag Banner, and the study was carried out with the baseline survey. Three family ranches were selected as the demonstrative households for the corporation study, while other three family ranches with the similar conditions were looked as the non-demonstrative households for the comparison. Demonstrative households of the fami-ly ranches reduced the stocking rate, optimized the flock structure and took a winter feeding and other means to explore the different management models on plant com-munity characteristic of family ranch. [Result] The seasonal dynamic of community characteristic in family ranches showed the single-peaks curves. The seasonal dy-namics of community coverage, height and biomass in the demonstrative households showed higher compared with the non-demonstrative households, and community density in the experiment households was lower than that of the control experiment households. Community coverage, height and biomass of degraded grassland in family ranch have a great improve after optimization of management. Community coverage, height , density and biomass were increasing in fencing plot, but decreas-ing in free grazing area. Enclosure improved grassland coverage, vegetation height, density and forage yield. Leymus chinensis played an important role in plant com-munity. The important values of Leymus chinensis, Stipa baicalensis, Cleistogenes squarrosa, and Carex duriuscula were high. Leymus chinensis important value in the demonstrative households of optimal management was higher than that in the non-demonstrative households, and Carex duriuscula important value of the non-demon-strative households was significantly higher than that of the demonstrative house-holds. The indexes of Margalef richnes,Shannon-Wiener diversity, Simpson diversity and Pielou uniformity showed that the demonstrative households were higher than the non-demonstrative households. [Conclusion] The research provides theoretical ref-erences for sustainable development of pastures dominated by family ranch. 展开更多
关键词 Family ranches Management mode Hulunber meadow steppe Community characteristic
下载PDF
Food Resource Partitioning in Alpine Weasel,Steppe Polecat and Upland Buzzard:Evidence from Stable Isotope Ratios 被引量:4
17
作者 易现峰 《Zoological Research》 CAS CSCD 北大核心 2005年第1期1-7,共7页
Based on mass balance theory and IsoSource program,stable carbon and nitrogen isotopic ratios revealed that small mammals (plateau pika,root vole and plateau zokor) contributed 26.8% and 27.0% and 29.2% to alpine weas... Based on mass balance theory and IsoSource program,stable carbon and nitrogen isotopic ratios revealed that small mammals (plateau pika,root vole and plateau zokor) contributed 26.8% and 27.0% and 29.2% to alpine weasel,steppe polecat and upland buzzard of carnivores as food respectively;adult passerine birds contributed 22.3%,47.7% and 69.1%,with hatchlings contributing 50.9%,25.6% and 1.70% to each respectively.δ 13 C values plotted against δ 15 N indicated significant partitioning in two-dimensional space among the three carnivores.It was reasonable to propose a food resource partitioning among alpine weasel,steppe polecat and upland buzzard,which partially revealed their co-existence mechanisms. 展开更多
关键词 Alpine weasel steppe polecat Upland buzzard Stable isotope FOOD Resource partitioning
下载PDF
Vegetation landscape structure and dynamics in sandy forest-steppe ecotone
18
作者 邹春静 韩士杰 +1 位作者 徐文铎 李道棠 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第4期303-306,共4页
Sandy forest-steppe ecotone in Baiyinaobao Natural Reserve of Inner Mongolia Autonomous Region of China is one of the special landscape types in forest-steppe vegetation zone in China. Vegetation landscape types, land... Sandy forest-steppe ecotone in Baiyinaobao Natural Reserve of Inner Mongolia Autonomous Region of China is one of the special landscape types in forest-steppe vegetation zone in China. Vegetation landscape types, landscape patches, and patch size were measured by the field investigation, forest photograph, and airscape. The structure of landscape patches in sandy forest-steppe ecotone, including composition structure, and size structure, was studied and the dynamics and transformation of landscape patches were analyzed. The data obtained in this study could provide theoretical basis for the research on vegetation landscape in forest-steppe ecotones and other vegetation types. 展开更多
关键词 Vegetation landscape STRUCTURE DYNAMICS Sandy forest steppe ECOTONE
下载PDF
基于TeamSTEPPS的出院准备联动干预在老年缺血性卒中患者中的应用
19
作者 李家乐 洪东好 许敏 《老年医学研究》 2024年第3期21-25,共5页
目的探讨基于Team STEPPS的出院准备联动干预在老年缺血性卒中患者中的应用。方法选取2022年10月—2023年9月在安徽医科大学附属巢湖医院神经内科住院的106例老年缺血性卒中患者为研究对象,按入院时间将2022年10月—2023年3月入院的51... 目的探讨基于Team STEPPS的出院准备联动干预在老年缺血性卒中患者中的应用。方法选取2022年10月—2023年9月在安徽医科大学附属巢湖医院神经内科住院的106例老年缺血性卒中患者为研究对象,按入院时间将2022年10月—2023年3月入院的51例患者作为对照组,予以常规出院护理及随访;2023年4月—2023年9月入院的55例患者为干预组,实施基于Team STEPPS的出院准备联动干预。比较两组患者的出院准备度、主要照顾者过渡期的准备情况以及出院90 d患者日常生活活动能力、不良事件发生及非计划再入院情况。结果干预组患者出院准备度评估量表总分及4个维度得分、主要照顾者过渡期准备情况评估量表总分及8个维度得分均高于对照组,差异有统计学意义(P均<0.01)。干预组患者出院90 d日常生活活动能力评分为55(40,65)分,高于对照组的40(20,55)分,差异有统计学意义(P<0.01)。干预组患者出院90 d发生跌倒/坠床2例、压力性损伤3例、非计划性拔管4例,均低于对照组的8、10、11例,差异有统计学意义(P均<0.05)。干预组患者出院90 d非计划再入院2例,少于对照组的8例,差异有统计学意义(P=0.046)。结论基于Team STEPPS的出院准备联动干预可提升老年缺血性卒中患者出院准备度,改善主要照顾者过渡期的准备情况,提高患者出院90 d后日常生活活动能力,降低不良事件发生及非计划再入院,为老年缺血性卒中患者出院准备提供一定的临床依据。 展开更多
关键词 Team steppS 缺血性卒中 出院准备 老年人
下载PDF
Comparison of CO_(2) Effluxes and Their Driving Factors Between Two Temperate Steppes in Inner Mongolia, China 被引量:8
20
作者 齐玉春 董云社 +3 位作者 Manfred DOMROES 耿元波 刘立新 刘杏认 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第5期726-736,共11页
Soil respiration is a key component of the global terrestrial ecosystem carbon cycle. The static opaque chamber method was used to measure the CO2 effiuxes from soil of a semiarid Aneurolepidium chinense steppe and a ... Soil respiration is a key component of the global terrestrial ecosystem carbon cycle. The static opaque chamber method was used to measure the CO2 effiuxes from soil of a semiarid Aneurolepidium chinense steppe and a Stipa krylovii steppe in the Xilin River Basin of Inner Mongolia, China from March 2002 to December 2004. The results indicated that the soil respiration rates of the semiarid Aneurolepidium chinense steppe and the Stipa krylovii steppe were both relatively high from mid-May to mid-September of each year and remained low during the rest of the year. The minimum value of soil respiration occurred in December or January and negative effiuxes of CO2 appeared for several days during the non-growing season of individual years at the two sampling sites. A high annual variation was found in the two steppes with the coefficients of variance (CV) being over 94%, even high to 131%. The annual sums of soil CO2 effiux of the Aneurolepidium chinense steppe varied between 356.4 gC m^-2 yr^-1 and 408.8 gC m^-2 yr^-1, while those of the Stipa krylovii steppe in the three years were in the range of 110.6 gC m^-2 yr^-1 to 148.6 g Cm^-2 yr^-1. The mean respiration rates of the Aneurolepidium chinense steppe were significantly higher than those of the Stipa krylovii steppe in different statistical periods with the exception of the non-growing season. About 59.9% and 80.6% of the soil respiration variations in both steppes for the whole sampling period were caused by the changes of temperature and soil water content. In the Aneurolepidium chinense steppe, the soil respiration rate has significant or extremely significant positive correlation (r = 0.58 - 0.85, p 〈 0.05 or p 〈 0.01) with air temperature and ground temperature of the topsoil except in 2002; the unique contributions of temperature change to the soil respiration variation of the three years were 53.3%, 81.0% and 58.6%, respectively. But, for the Stipa krylovii steppe in the same time interval, the soil water content (especially that of the 10-20 cm layer) has a greater effect on the change of soil respiration, and the unique contributions of the change of the 10-20 cm soil water content to the variations of soil respiration in 2002 and 2003 were 60.0% and 54.3%, respectively. In 2004, in spite of the higher contribution of temperature than soil water content, the contribution of ground temperature at a depth of 10 cm was only 46.2%, much weaker than that of any single year in the Aneurolepidium chinense steppe. 展开更多
关键词 SEMIARID Aneurolepidium chinense steppe Stipa krylovii steppe soil respiration drivingfactors COMPARISON
下载PDF
上一页 1 2 145 下一页 到第
使用帮助 返回顶部