Zhtmdong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to invest...Zhtmdong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to investigate the phy- sicochemical properties and gasification reactivity of the ultrafme semi-char, derived from a bench-scale fluidized bed gasifier, using Zhundong coal as fuel. The results obtained are as follows. In comparison to the raw coal, the carbon and ash content of the semi-char increase after partial gasification, but the ash fusion temperatures of them show no significant difference. Particularly, 76.53% of the sodium in the feed coal has released to the gas phase after fluidized bed gasification. The chemical compositions of the semi-char are closely related to its particle size, attributable to the distinctly different natures of diverse elements. The semi-char exhibits a higher graphitization degree, higher BET surface area, and richer meso- and macropores, which results in superior gasification reactiv- ity than the coal char. The chemical reactivity of the semi-char is significantly improved by an increased gasifica- tion temperature, which suggests the necessity of regasification of the semi-char at a higher temperature. Conse- quently, it will be considered feasible that these carbons in the semi-char from fluidized bed gasitiers are rec- laimed and reused for the gasification process.展开更多
基金the support of the National Natural Science Foundation of China(No.21306193)the International Science&Technology Cooperation Program of China(No.2014DFG61680)
文摘Zhtmdong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to investigate the phy- sicochemical properties and gasification reactivity of the ultrafme semi-char, derived from a bench-scale fluidized bed gasifier, using Zhundong coal as fuel. The results obtained are as follows. In comparison to the raw coal, the carbon and ash content of the semi-char increase after partial gasification, but the ash fusion temperatures of them show no significant difference. Particularly, 76.53% of the sodium in the feed coal has released to the gas phase after fluidized bed gasification. The chemical compositions of the semi-char are closely related to its particle size, attributable to the distinctly different natures of diverse elements. The semi-char exhibits a higher graphitization degree, higher BET surface area, and richer meso- and macropores, which results in superior gasification reactiv- ity than the coal char. The chemical reactivity of the semi-char is significantly improved by an increased gasifica- tion temperature, which suggests the necessity of regasification of the semi-char at a higher temperature. Conse- quently, it will be considered feasible that these carbons in the semi-char from fluidized bed gasitiers are rec- laimed and reused for the gasification process.