The circular electron-positron collider(CEPC)is designed to precisely measure the properties of the Higgs boson,study electroweak interactions at the Z-boson peak,and search for new physics beyond the Standard Model.A...The circular electron-positron collider(CEPC)is designed to precisely measure the properties of the Higgs boson,study electroweak interactions at the Z-boson peak,and search for new physics beyond the Standard Model.As a component of the 4th conceptual CEPC detector,the drift chamber facilitates the measurement of charged particles.This study implemented a Geant4-based simulation and track reconstruction for the drift chamber.For the simulation,detector construction and response were implemented and added to the CEPC simulation chain.The development of track reconstruction involves track finding using the combinatorial Kalman filter method and track fitting using the tool of GenFit.Using the simulated data,the tracking performance was studied.The results showed that both the reconstruction resolution and tracking efficiency satisfied the requirements of the CEPC experiment.展开更多
Mafic enclaves in granites are generally considered to represent coeval mafic melts that derived from metasomatized mantle,which can provide valuable information about crust-mantle interaction.Exploring the genetic li...Mafic enclaves in granites are generally considered to represent coeval mafic melts that derived from metasomatized mantle,which can provide valuable information about crust-mantle interaction.Exploring the genetic links between the mafic enclaves and their host monzogranite from the Triassic Zhashui Pluton,Qinling orogenic belt.The enclaves(220±4.6 Ma)and the monzogranite(220±2.8 Ma)display identical zircon U-Pb ages,and they also share similar trace element and zircon Lu-Hf isotopes,indicating a cognate source.The monzogranite displays zirconεHf(t)values of−0.99 to+1.98,while the mafic enclaves show similar values of−0.45 to+3.26;however,differences in mineral chemistry reveal different crystallization conditions.The amphibole from the mafic enclaves has higher temperature and pressure(757℃;2.65 kbar)compared to those of the host monzogranite(733℃;1.96 kbar),suggesting that mafic minerals in the enclaves crystallized at an early stage.Moreover,apatite in the mafic enclaves displays slightly higher volatile contents(0.72 wt%)than those of the monzogranite(0.66 wt%),indicating a volatile-rich condition.These results suggest that the mafic enclaves represent early hydrous mafic cumulates in the granitic chamber,and subsequent magma convection would have led to the formation of the mafic enclaves.展开更多
Active target time projection chambers are state-of-the-art tools in the field of low-energy nuclear physics and are particularly suitable for experiments using low-intensity radioactive ion beams or gamma rays.The Fu...Active target time projection chambers are state-of-the-art tools in the field of low-energy nuclear physics and are particularly suitable for experiments using low-intensity radioactive ion beams or gamma rays.The Fudan multi-purpose active target time projection chamber(fMeta-TPC)with 2048 channels was developed to studyα-clustering nuclei.This study focused on the photonuclear reaction with a laser Compton scattering gamma source,particularly for the decay of the highly excitedαcluster state.The design of fMeta-TPC is described in this paper.A comprehensive evaluation of its offline performance was conducted using an ultraviolet laser and ^(241)Amαsource.The results showed that the intrinsic angular resolution of the detector was within 0.30°,and the detector had an energy resolution of 6.85%for 3.0 MeVαparticles.The gain uniformity of the detector was approximately 10%(RMS/Mean),as tested by the ^(55)Fe X-ray source.展开更多
Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial m...Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity.展开更多
Sparse felsic microgranitoid enclaves(FMEs)in the Shangshuiquan granite of the Zhangjiakou district,the north margin of the North China Craton,are fine-grained,dark-colored and exhibit subangular to subspherical shape...Sparse felsic microgranitoid enclaves(FMEs)in the Shangshuiquan granite of the Zhangjiakou district,the north margin of the North China Craton,are fine-grained,dark-colored and exhibit subangular to subspherical shapes.They share similar mineral assemblages,chemical compositions,and zircon Hf isotope compositions to the host granite.New zircon U-Pb geochronology reveals that the FMEs crystallized at 156-153 Ma,while the Shangshuiquan granite formed at ca.146 Ma.The FEMs are,therefore,10 to 7 Ma older than the host granite.Combined with petrological evidence,we suggest that the FMEs are fragments of rapidly crystalized magmas,which were captured by the younger Shangshuiquan magma.Magmas of the FMEs and Shangshuiquan granite originated from the same reservoir.The Shangshuiquan granite is the result of small batches of magma being built up incrementally,and the FMEs belong to the earlier batches of magma.The lifespan of the Shangshuiquan magma reservoir exceeds 10 Ma.FMEs derived from cogenetic fragments have the potential to offer critical information about the formation process and timescale of granitic plutons.展开更多
Objective:To explore the corrective effect of posterior chamber intraocular lens implantation with phakic eyes in the treatment of high myopia and astigmatism.Methods:From May 2023,the hospital began to collect the ca...Objective:To explore the corrective effect of posterior chamber intraocular lens implantation with phakic eyes in the treatment of high myopia and astigmatism.Methods:From May 2023,the hospital began to collect the case data of diagnosis and treatment of high myopia and astigmatism.By May 2024,310 cases were included,all of which were treated with posterior chamber intraocular lens implantation.The visual acuity,astigmatism and axial position of the intraocular lens were observed before and after treatment.Results:At different time points after the operation,the patient’s vision was significantly improved compared with that before the operation(P<0.05),and the vision level was equal to or greater than the best-corrected vision before the operation.At different time points after the operation,the average rotation of the intraocular lens was less than 5 degrees.Astigmatism was significantly lower than that before the operation(P<0.05).After the operation,the intraocular pressure increased in 11 cases,accounting for 3.55%,with no adverse complications such as lens turbidity,glare and obvious halo occurring.Conclusion:The posterior chamber intraocular lens implantation with phakic eyes has an ideal correction effect in the treatment of high myopia and astigmatism,which can effectively improve the vision level of patients and reduce the degree of astigmatism,and has high effectiveness and safety.展开更多
In order to investigate the atmospheric oxidation processes and the formation of secondary organic aerosol (SOA), an indoor environmental reaction smog chamber are constructed and characterized. The system consists ...In order to investigate the atmospheric oxidation processes and the formation of secondary organic aerosol (SOA), an indoor environmental reaction smog chamber are constructed and characterized. The system consists of the collapsible ~830 L FEP Teflon film main reactor, in which the atmospheric chemical reactions take place and the formation of SOA occurs under the simulated atmospheric conditions, and the diverse on-line gas- and particle-phase instrumentation, such as the proton transfer reaction mass spectrometer, the synchrotron radiation photoionization mass spectrometer, the aerosol laser time-of-flight mass spectrometer, and other traditional commercial instruments. The initial characterization experiments are described, concerning the temperature and ultraviolet light intensity, the reactivity of the pure air, the wall loss rates of gaseous compounds and particulate matter. And the initial evaluation experiments for SOA yields from the ozonolysis of α-pinene and for mass spectra of the products resulting from the photooxidation of OH initiated isoprene are also presented, which indicate the applicability of this facility on the studies of gas-phase chemical mechanisms as well as the formation of SOA expected in the atmosphere.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.12025502 and 12341504)。
文摘The circular electron-positron collider(CEPC)is designed to precisely measure the properties of the Higgs boson,study electroweak interactions at the Z-boson peak,and search for new physics beyond the Standard Model.As a component of the 4th conceptual CEPC detector,the drift chamber facilitates the measurement of charged particles.This study implemented a Geant4-based simulation and track reconstruction for the drift chamber.For the simulation,detector construction and response were implemented and added to the CEPC simulation chain.The development of track reconstruction involves track finding using the combinatorial Kalman filter method and track fitting using the tool of GenFit.Using the simulated data,the tracking performance was studied.The results showed that both the reconstruction resolution and tracking efficiency satisfied the requirements of the CEPC experiment.
基金supported by the National Natural Science Foundation of China(Grant Nos.42372071,41421002)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201324)a research grant of the State Key Laboratory of Continental Dynamics(Grant No.SKLCD-04).
文摘Mafic enclaves in granites are generally considered to represent coeval mafic melts that derived from metasomatized mantle,which can provide valuable information about crust-mantle interaction.Exploring the genetic links between the mafic enclaves and their host monzogranite from the Triassic Zhashui Pluton,Qinling orogenic belt.The enclaves(220±4.6 Ma)and the monzogranite(220±2.8 Ma)display identical zircon U-Pb ages,and they also share similar trace element and zircon Lu-Hf isotopes,indicating a cognate source.The monzogranite displays zirconεHf(t)values of−0.99 to+1.98,while the mafic enclaves show similar values of−0.45 to+3.26;however,differences in mineral chemistry reveal different crystallization conditions.The amphibole from the mafic enclaves has higher temperature and pressure(757℃;2.65 kbar)compared to those of the host monzogranite(733℃;1.96 kbar),suggesting that mafic minerals in the enclaves crystallized at an early stage.Moreover,apatite in the mafic enclaves displays slightly higher volatile contents(0.72 wt%)than those of the monzogranite(0.66 wt%),indicating a volatile-rich condition.These results suggest that the mafic enclaves represent early hydrous mafic cumulates in the granitic chamber,and subsequent magma convection would have led to the formation of the mafic enclaves.
基金supported by the National Key R&D Program of China(Nos.2022YFA1602402,2020YFE0202001,2023YFA1606900)the National Natural Science Foundation of China(NSFC)(Nos.12235003,11835002,11925502,11705031,12275053,12147101).
文摘Active target time projection chambers are state-of-the-art tools in the field of low-energy nuclear physics and are particularly suitable for experiments using low-intensity radioactive ion beams or gamma rays.The Fudan multi-purpose active target time projection chamber(fMeta-TPC)with 2048 channels was developed to studyα-clustering nuclei.This study focused on the photonuclear reaction with a laser Compton scattering gamma source,particularly for the decay of the highly excitedαcluster state.The design of fMeta-TPC is described in this paper.A comprehensive evaluation of its offline performance was conducted using an ultraviolet laser and ^(241)Amαsource.The results showed that the intrinsic angular resolution of the detector was within 0.30°,and the detector had an energy resolution of 6.85%for 3.0 MeVαparticles.The gain uniformity of the detector was approximately 10%(RMS/Mean),as tested by the ^(55)Fe X-ray source.
基金supported by the Scientific Research Foundation of Xijing University,China(No.XJ19T03)the Opening Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory(No.ZHD201701)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2024JC-YBMS-342).
文摘Enhancing plasma uniformity can be achieved by modifying coil and chamber structures in radio frequency inductively coupled plasma(ICP)to meet the demand for large-area and uniformly distributed plasma in industrial manufacturing.This study utilized a two-dimensional self-consistent fluid model to investigate how different coil configurations and chamber aspect ratios affect the radial uniformity of plasma in radio frequency ICP.The findings indicate that optimizing the radial spacing of the coil enhances plasma uniformity but with a reduction in electron density.Furthermore,optimizing the coil within the ICP reactor,using the interior point method in the Interior Point Optimizer significantly enhances plasma uniformity,elevating it from 56%to 96%within the range of the model sizes.Additionally,when the chamber aspect ratio k changes from 2.8 to 4.7,the plasma distribution changes from a center-high to a saddleshaped distribution.Moreover,the plasma uniformity becomes worse.Finally,adjusting process parameters,such as increasing source power and gas pressure,can enhance plasma uniformity.These findings contribute to optimizing the etching process by improving plasma radial uniformity.
基金funded by the National Natural Science Foundation of China (Grant Nos. 42373072, 42003032)the Open Project of Weihai Key Laboratory of Energy and Mineral Resources Investigation and Evaluation (Grant No. LDKF-2023WH-05)the China Geological Survey Project (Grant Nos. DD20190166, DD20190570 and DD20190159)
文摘Sparse felsic microgranitoid enclaves(FMEs)in the Shangshuiquan granite of the Zhangjiakou district,the north margin of the North China Craton,are fine-grained,dark-colored and exhibit subangular to subspherical shapes.They share similar mineral assemblages,chemical compositions,and zircon Hf isotope compositions to the host granite.New zircon U-Pb geochronology reveals that the FMEs crystallized at 156-153 Ma,while the Shangshuiquan granite formed at ca.146 Ma.The FEMs are,therefore,10 to 7 Ma older than the host granite.Combined with petrological evidence,we suggest that the FMEs are fragments of rapidly crystalized magmas,which were captured by the younger Shangshuiquan magma.Magmas of the FMEs and Shangshuiquan granite originated from the same reservoir.The Shangshuiquan granite is the result of small batches of magma being built up incrementally,and the FMEs belong to the earlier batches of magma.The lifespan of the Shangshuiquan magma reservoir exceeds 10 Ma.FMEs derived from cogenetic fragments have the potential to offer critical information about the formation process and timescale of granitic plutons.
文摘Objective:To explore the corrective effect of posterior chamber intraocular lens implantation with phakic eyes in the treatment of high myopia and astigmatism.Methods:From May 2023,the hospital began to collect the case data of diagnosis and treatment of high myopia and astigmatism.By May 2024,310 cases were included,all of which were treated with posterior chamber intraocular lens implantation.The visual acuity,astigmatism and axial position of the intraocular lens were observed before and after treatment.Results:At different time points after the operation,the patient’s vision was significantly improved compared with that before the operation(P<0.05),and the vision level was equal to or greater than the best-corrected vision before the operation.At different time points after the operation,the average rotation of the intraocular lens was less than 5 degrees.Astigmatism was significantly lower than that before the operation(P<0.05).After the operation,the intraocular pressure increased in 11 cases,accounting for 3.55%,with no adverse complications such as lens turbidity,glare and obvious halo occurring.Conclusion:The posterior chamber intraocular lens implantation with phakic eyes has an ideal correction effect in the treatment of high myopia and astigmatism,which can effectively improve the vision level of patients and reduce the degree of astigmatism,and has high effectiveness and safety.
基金This work was supported by the Natural Science Foundation of Anhui Province, China (No.1208085MD59), the National Natural Science Foundation of China (No.U1232209, No.41175121, and No.21307137), the Presidential Foundation of Hefei Institutes of Physical Science, Chinese Academy of Sciences, China (No.YZJJ201302), and the Knowledge Innovation Foundation of the Chinese Academy of Sciences (No.KJCX2-YW-N24).
文摘In order to investigate the atmospheric oxidation processes and the formation of secondary organic aerosol (SOA), an indoor environmental reaction smog chamber are constructed and characterized. The system consists of the collapsible ~830 L FEP Teflon film main reactor, in which the atmospheric chemical reactions take place and the formation of SOA occurs under the simulated atmospheric conditions, and the diverse on-line gas- and particle-phase instrumentation, such as the proton transfer reaction mass spectrometer, the synchrotron radiation photoionization mass spectrometer, the aerosol laser time-of-flight mass spectrometer, and other traditional commercial instruments. The initial characterization experiments are described, concerning the temperature and ultraviolet light intensity, the reactivity of the pure air, the wall loss rates of gaseous compounds and particulate matter. And the initial evaluation experiments for SOA yields from the ozonolysis of α-pinene and for mass spectra of the products resulting from the photooxidation of OH initiated isoprene are also presented, which indicate the applicability of this facility on the studies of gas-phase chemical mechanisms as well as the formation of SOA expected in the atmosphere.