In this article,we will investigate the properties of iterative sequence for non-expansive mappings and present several strong and weak convergence results of successive approximations to fixed points of non-expansive...In this article,we will investigate the properties of iterative sequence for non-expansive mappings and present several strong and weak convergence results of successive approximations to fixed points of non-expansive mappings in uniformly convex Banach spaces.The results presented in this article generalize and improve various ones concerned with constructive techniques for the fixed points of non-expansive mappings.展开更多
For a Banach Space X Garcia-Falset introduced the coefficient R(X) and showed that if R(X) 〈 2 then X has a fixed point. In this paper, we define a mean non-expansive mapping T on X in the sense that ||Tx - TY...For a Banach Space X Garcia-Falset introduced the coefficient R(X) and showed that if R(X) 〈 2 then X has a fixed point. In this paper, we define a mean non-expansive mapping T on X in the sense that ||Tx - TY|| ≤ a||x - y|| + b||x - Ty|| for any x,y E X, where a,b ≥ 0, a + b ≤ 1. We show that if R(X) 〈 1/1+b then T has a fixed point in X.展开更多
A few weak and strong convergence theorems of the modified three-step iterative sequence with errors and the modified Ishikawa iterative sequence with errors for asymptotically non-expansive mappings in any non-empty ...A few weak and strong convergence theorems of the modified three-step iterative sequence with errors and the modified Ishikawa iterative sequence with errors for asymptotically non-expansive mappings in any non-empty closed convex subsets of uniformly convex Banach spaces are established. The results presented in this paper substantially extend the results due to Chang (2001), Osilike and Aniagbosor (2000), Rhoades (1994) and Schu (1991).展开更多
A viscosity method for a hierarchical fixed point solving variational inequality problems is presented. The method is used to solve variational inequalities, where the involved mappings are non-expansive. Solutions ar...A viscosity method for a hierarchical fixed point solving variational inequality problems is presented. The method is used to solve variational inequalities, where the involved mappings are non-expansive. Solutions are sought in the set of the fixed points of another non-expansive mapping. As applications, we use the results to study problems of the monotone variational inequality, the convex programming, the hierarchical minimization, and the quadratic minimization over fixed point sets.展开更多
Some generalizations of the result proved by S.P. Singh [J. Approx. Theory 25(1979), 89-90] are presented in convex metric spaces. The results proved contain several known results on the subject.
文摘In this article,we will investigate the properties of iterative sequence for non-expansive mappings and present several strong and weak convergence results of successive approximations to fixed points of non-expansive mappings in uniformly convex Banach spaces.The results presented in this article generalize and improve various ones concerned with constructive techniques for the fixed points of non-expansive mappings.
基金the National Natural Science Foundation of China(No.10461006)the Natural Science Foundation of Shandong Province(Y002A10)the Younger Foundation of Yantai University(SX05Z9)
文摘For a Banach Space X Garcia-Falset introduced the coefficient R(X) and showed that if R(X) 〈 2 then X has a fixed point. In this paper, we define a mean non-expansive mapping T on X in the sense that ||Tx - TY|| ≤ a||x - y|| + b||x - Ty|| for any x,y E X, where a,b ≥ 0, a + b ≤ 1. We show that if R(X) 〈 1/1+b then T has a fixed point in X.
基金supported by Korea Research Foundation Grant(KRF-2001-005-D00002)
文摘A few weak and strong convergence theorems of the modified three-step iterative sequence with errors and the modified Ishikawa iterative sequence with errors for asymptotically non-expansive mappings in any non-empty closed convex subsets of uniformly convex Banach spaces are established. The results presented in this paper substantially extend the results due to Chang (2001), Osilike and Aniagbosor (2000), Rhoades (1994) and Schu (1991).
基金supported by the Natural Science Foundation of Yibin University (No.2009Z3)
文摘A viscosity method for a hierarchical fixed point solving variational inequality problems is presented. The method is used to solve variational inequalities, where the involved mappings are non-expansive. Solutions are sought in the set of the fixed points of another non-expansive mapping. As applications, we use the results to study problems of the monotone variational inequality, the convex programming, the hierarchical minimization, and the quadratic minimization over fixed point sets.
基金This research is partially supported by University Grants Commission, India (F30-238/2004(SR)).
文摘Some generalizations of the result proved by S.P. Singh [J. Approx. Theory 25(1979), 89-90] are presented in convex metric spaces. The results proved contain several known results on the subject.