人脸反欺诈(Face anti-spoofing,FAS)在防止人脸识别系统遭受欺诈攻击方面起着至关重要的作用,得益于深度学习网络强大的特征提取能力,基于深度学习的FAS算法取得比基于传统手工特征算法更好的性能,成为近期的研究热点。尽管大多数基于...人脸反欺诈(Face anti-spoofing,FAS)在防止人脸识别系统遭受欺诈攻击方面起着至关重要的作用,得益于深度学习网络强大的特征提取能力,基于深度学习的FAS算法取得比基于传统手工特征算法更好的性能,成为近期的研究热点。尽管大多数基于深度学习的FAS算法能在库内达到很好的检测效果,但是跨库检测性能欠佳,主要原因是库内和库外数据往往在不同条件下采集,例如拍摄设备、环境光照和攻击呈现设备不同,导致库内和库外数据的分布不同,两者之间存在域位移。当训练数据的多样性不足时,容易在库内学习过程中过拟合,跨库泛化性能不好。尽管我们可以判断起因,然而在真实世界的应用过程中解决上述问题并不容易。一方面,人脸反欺诈模型难以收集所有场景下的有标签训练样本;另一方面,不同应用场景使得同一因素产生不同的影响,例如,不同场景的光照导致域位移,影响了分类模型对本质性欺诈纹理的提取。为此,本文将元伪标签引入人脸反欺诈任务,提出一种基于元伪标签的人脸反欺诈方法。主要贡献包括:第一,提出一种基于图像块的“教师生成伪标签,学生反馈”半监督学习框架,挖掘局部图像的高区分度特征,解决有标签样本不足的问题;第二,基于局部重力模式(Pattern of local gravitational force,PLGF),设计一种带有注意力模块的光照不变特征分支,抑制应用场景中最容易影响特征提取的光照因素;第三,将元学习与半监督学习框架相结合,优化教师生成伪标签的过程,提高算法的跨库检测能力。与现有流行算法相比,在三个公开的测试数据集(包括CASIA、Replay-Attack和MSU)上,所提出方法在库内测试和跨库测试下均有突出的表现,尤其是泛化性能得到显著提高。在样本数量中等时,在不同库中的半总错误率保持最低。展开更多
结合半监督学习中的自学习技术以及二维主成分分析(two-dimensional principal component analysis-2DPCA)方法,提出了一种基于半监督学习的人脸识别方法.在二维主成分分析的基础上,利用少量具有类别标签的样本训练分类器,然后利用半监...结合半监督学习中的自学习技术以及二维主成分分析(two-dimensional principal component analysis-2DPCA)方法,提出了一种基于半监督学习的人脸识别方法.在二维主成分分析的基础上,利用少量具有类别标签的样本训练分类器,然后利用半监督学习中的自学习技术,对未知类别标签的人脸样本进行分类,并将具有高置信度的人脸样本加入到训练集中,以此增加训练集中的人脸样本数量.在ORL人脸库和Yale人脸库的实验结果,表明了提出方法的有效性.展开更多
文摘人脸反欺诈(Face anti-spoofing,FAS)在防止人脸识别系统遭受欺诈攻击方面起着至关重要的作用,得益于深度学习网络强大的特征提取能力,基于深度学习的FAS算法取得比基于传统手工特征算法更好的性能,成为近期的研究热点。尽管大多数基于深度学习的FAS算法能在库内达到很好的检测效果,但是跨库检测性能欠佳,主要原因是库内和库外数据往往在不同条件下采集,例如拍摄设备、环境光照和攻击呈现设备不同,导致库内和库外数据的分布不同,两者之间存在域位移。当训练数据的多样性不足时,容易在库内学习过程中过拟合,跨库泛化性能不好。尽管我们可以判断起因,然而在真实世界的应用过程中解决上述问题并不容易。一方面,人脸反欺诈模型难以收集所有场景下的有标签训练样本;另一方面,不同应用场景使得同一因素产生不同的影响,例如,不同场景的光照导致域位移,影响了分类模型对本质性欺诈纹理的提取。为此,本文将元伪标签引入人脸反欺诈任务,提出一种基于元伪标签的人脸反欺诈方法。主要贡献包括:第一,提出一种基于图像块的“教师生成伪标签,学生反馈”半监督学习框架,挖掘局部图像的高区分度特征,解决有标签样本不足的问题;第二,基于局部重力模式(Pattern of local gravitational force,PLGF),设计一种带有注意力模块的光照不变特征分支,抑制应用场景中最容易影响特征提取的光照因素;第三,将元学习与半监督学习框架相结合,优化教师生成伪标签的过程,提高算法的跨库检测能力。与现有流行算法相比,在三个公开的测试数据集(包括CASIA、Replay-Attack和MSU)上,所提出方法在库内测试和跨库测试下均有突出的表现,尤其是泛化性能得到显著提高。在样本数量中等时,在不同库中的半总错误率保持最低。
文摘结合半监督学习中的自学习技术以及二维主成分分析(two-dimensional principal component analysis-2DPCA)方法,提出了一种基于半监督学习的人脸识别方法.在二维主成分分析的基础上,利用少量具有类别标签的样本训练分类器,然后利用半监督学习中的自学习技术,对未知类别标签的人脸样本进行分类,并将具有高置信度的人脸样本加入到训练集中,以此增加训练集中的人脸样本数量.在ORL人脸库和Yale人脸库的实验结果,表明了提出方法的有效性.