Derivation of the Freundlich and Temkin isotherm models from the kinetic adsorption/desorpt ion equations was carried out to calculate their thermodynamic equilibrium constants. The calculation formulae ofthree thermo...Derivation of the Freundlich and Temkin isotherm models from the kinetic adsorption/desorpt ion equations was carried out to calculate their thermodynamic equilibrium constants. The calculation formulae ofthree thermodynamic parameters, the standard molar Gibbs free energy change, the standard molar enthalpy change and the standard molar entropy change, of isothermal adsorption processes for Freundlich andTemkin isotherm models were deduced according to the relationship between the thermodynamic equilibriumconstats and the temperature.展开更多
A new competitive adsorption isothermal model(CAIM)was developed for the coexistent and competitive binding of heavy metals to the soil surface.This model extended the earlier adsorption isothermal models by consideri...A new competitive adsorption isothermal model(CAIM)was developed for the coexistent and competitive binding of heavy metals to the soil surface.This model extended the earlier adsorption isothermal models by considering more than one kind of ion adsorption on the soil surface.It was compared with the Langmuir model using different conditions, and it was found that CAIM,which was suitable for competitive ion adsorption at the soil solid-liquid surface,had more advantages than the Langmuir model.The new competitive adsorption isothermal model was used to fit the data of heavy metal(Zn and Cd)competitive adsorption by a yellow soil at two temperatures.The results showed that CAIM was appropriate for the competitive adsorption of heavy metals on the soil surface at different temperatures.The fitted parameters of CAIM had explicit physical meaning.The model allowed for the calculation of the standard molar Gibbs free energy change,the standard molar enthalpy change,and the standard molar entropy change of the competitive adsorption of the heavy metals,Zn and Cd,by the yellow soil at two temperatures using the thermodynamic equilibrium constants.展开更多
We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the...We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the reaction. Thereby, we established mathematical models on two scales, respectively, preform and reactor. These models were used for the numerical simulation of the process of ceramic matrix composites densified by isothermal chemical vapor infiltration(ICVI). The models were used to carry out a systematic study on the influence of process conditions and the preform structure on the densification behaviors. The most important findings of our study are that the processing time could be reduced by about 50% without compromising the quality of the material, if the processing temperature is 950-1 000 ℃ for the first 70 hours and then raised to 1 100 ℃.展开更多
4-(R-Phenylazo)-2-methyl quinoline derivatives form (1:1) complexes with nickel chloride, nickel acetate and copper acetate which were syntheses. The three complexes are non-electrolyte in dimethylsulfoxide (DMF). The...4-(R-Phenylazo)-2-methyl quinoline derivatives form (1:1) complexes with nickel chloride, nickel acetate and copper acetate which were syntheses. The three complexes are non-electrolyte in dimethylsulfoxide (DMF). The results of electronic and magnetic measurements show that these complexes are of octahedral structures. The oxygen and nitrogen donate their lone-pair electrons to metal ion to form chelates with formula [MLRm.nH2O]. The relative stabilities of the complexes have been calculated from TG curve using Coats-Redfern and Ozawa methods.展开更多
文摘Derivation of the Freundlich and Temkin isotherm models from the kinetic adsorption/desorpt ion equations was carried out to calculate their thermodynamic equilibrium constants. The calculation formulae ofthree thermodynamic parameters, the standard molar Gibbs free energy change, the standard molar enthalpy change and the standard molar entropy change, of isothermal adsorption processes for Freundlich andTemkin isotherm models were deduced according to the relationship between the thermodynamic equilibriumconstats and the temperature.
基金Project supported by the Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT0749)
文摘A new competitive adsorption isothermal model(CAIM)was developed for the coexistent and competitive binding of heavy metals to the soil surface.This model extended the earlier adsorption isothermal models by considering more than one kind of ion adsorption on the soil surface.It was compared with the Langmuir model using different conditions, and it was found that CAIM,which was suitable for competitive ion adsorption at the soil solid-liquid surface,had more advantages than the Langmuir model.The new competitive adsorption isothermal model was used to fit the data of heavy metal(Zn and Cd)competitive adsorption by a yellow soil at two temperatures.The results showed that CAIM was appropriate for the competitive adsorption of heavy metals on the soil surface at different temperatures.The fitted parameters of CAIM had explicit physical meaning.The model allowed for the calculation of the standard molar Gibbs free energy change,the standard molar enthalpy change,and the standard molar entropy change of the competitive adsorption of the heavy metals,Zn and Cd,by the yellow soil at two temperatures using the thermodynamic equilibrium constants.
基金Funded by the National Natural Science Foundation of China(No.51472092)
文摘We studied the characteristics of two-scale pore structure of preform in the deposition process and the mass transfer of reactant gas in dual-scale pores, and observed the physiochemical phenomenon associated with the reaction. Thereby, we established mathematical models on two scales, respectively, preform and reactor. These models were used for the numerical simulation of the process of ceramic matrix composites densified by isothermal chemical vapor infiltration(ICVI). The models were used to carry out a systematic study on the influence of process conditions and the preform structure on the densification behaviors. The most important findings of our study are that the processing time could be reduced by about 50% without compromising the quality of the material, if the processing temperature is 950-1 000 ℃ for the first 70 hours and then raised to 1 100 ℃.
文摘4-(R-Phenylazo)-2-methyl quinoline derivatives form (1:1) complexes with nickel chloride, nickel acetate and copper acetate which were syntheses. The three complexes are non-electrolyte in dimethylsulfoxide (DMF). The results of electronic and magnetic measurements show that these complexes are of octahedral structures. The oxygen and nitrogen donate their lone-pair electrons to metal ion to form chelates with formula [MLRm.nH2O]. The relative stabilities of the complexes have been calculated from TG curve using Coats-Redfern and Ozawa methods.