期刊文献+
共找到14,596篇文章
< 1 2 250 >
每页显示 20 50 100
Anion exchange membranes with a semi-interpenetrating polymer network using 1,6-dibromohexane as bifunctional crosslinker
1
作者 Aijie Li Zhanliang Wang +6 位作者 Zhihao Si Lu Lu Peipei Huang Jinhong Liu Songyuan Yao Peiyong Qin Xinmiao Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期199-208,共10页
An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of A... An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of AEMs,semi-interpenetrating polymer networks(SIPNs)have been suggested for their structural superiorities,i.e.,the tunable local density of ion exchange groups for IEC and the restrained leaching of hygroscopic groups by insolubility for WU.Unfortunately,the conventional SIPN AEMs still struggle to balances IEC,WU,and mechanical strength simultaneously,due to the lack of the compact crosslinking region.In this work,we proposed a novel SIPN structure of polyvinylidene difluoride/polyvinylimidazole/1,6-dibromohexane(PVDF/PVIm/DBH).On the one hand,DBH with two cationic groups of imidazole groups are introduced to enhance the ion conductivity,which is different from the conventional monofunctional modifier with only one cationic group.On the other hand,DBH has the ability to bridge with PVIm,where the mechanical strength of the resulting AEM is increased by the increase of crosslinking degree.Results show that a low WU of 38.1%to 62.6%,high IEC of 2.12—2.22 mmol·g^(-1),and excellent tensile strength of 3.54—12.35 MPa for PVDF/PVIm/DBH membrane are achieved.This work opens a new avenue for achieving the high-quality AEMs. 展开更多
关键词 Anion exchange membrane Polyvinylidene difluoride ELECTRODIALYSIS semi-interpenetrating polymer networks
下载PDF
Fluorinated semi-interpenetrating polymer networks for enhancing the mechanical performance and storage stability of polymer-bonded explosives by controlling curing and phase separation rates
2
作者 Chao Deng Huihui Liu +1 位作者 Yongping Bai Zhen Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期58-66,共9页
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare... Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount. 展开更多
关键词 semi-interpenetrating polymer networks FLUOROPOLYMER Curing rate Phase separation rate Polymer-bonded explosives
下载PDF
3D Road Network Modeling and Road Structure Recognition in Internet of Vehicles
3
作者 Dun Cao Jia Ru +3 位作者 Jian Qin Amr Tolba Jin Wang Min Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1365-1384,共20页
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp... Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety. 展开更多
关键词 Internet of vehicles road networks 3D road model structure recognition GIS
下载PDF
Graph Convolutional Networks Embedding Textual Structure Information for Relation Extraction
4
作者 Chuyuan Wei Jinzhe Li +2 位作者 Zhiyuan Wang Shanshan Wan Maozu Guo 《Computers, Materials & Continua》 SCIE EI 2024年第5期3299-3314,共16页
Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,... Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous. 展开更多
关键词 Relation extraction graph convolutional neural networks dependency tree dynamic structure attention
下载PDF
Analysis of Urban Agglomeration Network Structure Based on Baidu Migration Data: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Urban Agglomeration
5
作者 XIA Yuan WANG Bin 《Journal of Landscape Research》 2024年第4期47-50,共4页
The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure ... The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure of urban agglomeration in the Greater Bay Area through the use of social network analysis method.This is the inaugural application of big data based on location services in the study of urban agglomeration network structure,which represents a novel research perspective on this topic.The study reveals that the density of network linkages in the Greater Bay Area urban agglomeration has reached 100%,indicating a mature network-like spatial structure.This structure has given rise to three distinct communities:Shenzhen-Dongguan-Huizhou,Guangzhou-Foshan-Zhaoqing,and Zhuhai-Zhongshan-Jiangmen.Additionally,cities within the Greater Bay Area urban agglomeration play different roles,suggesting that varying development strategies may be necessary to achieve staggered development.The study demonstrates that large datasets represented by LBS can offer novel insights and methodologies for the examination of urban agglomeration network structures,contingent on the appropriate mining and processing of the data. 展开更多
关键词 Baidu migration data Social network analysis Urban agglomeration network structure Greater Bay Area urban agglomeration
下载PDF
Redefinable neural network for structured light array
6
作者 Hengyang Li Jiaming Xu +7 位作者 Huaizhi Zhang Cong Hu Zining Wan Yu Xiao Xiahui Tang Chenhao Wan Gang Xu Yingxiong Qin 《Advanced Photonics Nexus》 2024年第5期151-161,共11页
Neural networks have provided faster and more straightforward solutions for laser modulation.However,their effectiveness when facing diverse structured lights and various output resolutions remains vulnerable because ... Neural networks have provided faster and more straightforward solutions for laser modulation.However,their effectiveness when facing diverse structured lights and various output resolutions remains vulnerable because of the specialized end-to-end training and static model.Here,we propose a redefinable neural network(RediNet),realizing customized modulation on diverse structured light arrays through a single general approach.The network input format features a redefinable dimension designation,which ensures RediNet wide applicability and removes the burden of processing pixel-wise light distributions.The prowess of originally generating arbitrary-resolution holograms with a fixed network is first demonstrated.The versatility is showcased in the generation of 2D/3D foci arrays,Bessel and Airy beam arrays,(perfect)vortex beam arrays,and even snowflake-intensity arrays with arbitrarily built phase functions.A standout application is producing multichannel compound vortex beams,where RediNet empowers a spatial light modulator(SLM)to offer comprehensive multiplexing functionalities for free-space optical communication.Moreover,RediNet has the hitherto highest efficiency,only consuming 12 ms(faster than the mainstream SLM framerate of 60 Hz)for a 1000^(2)-resolution holograph,which is critical in real-time required scenarios.Considering the fine resolution,high speed,and unprecedented universality,RediNet can serve extensive applications,such as next-generation optical communication,parallel laser direct writing,and optical traps. 展开更多
关键词 structured light neural network computer-generated holograph beam array
下载PDF
Transition of plasticity and fracture mode of Zr-Al-Ni-Cu bulk metallic glasses with network structures 被引量:1
7
作者 蔡安辉 丁大伟 +4 位作者 安伟科 周果君 罗云 李江鸿 彭勇宜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2617-2623,共7页
Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etch... Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed. 展开更多
关键词 bulk metallic glass PLASTICITY fracture mode network structure
下载PDF
Deep learning to estimate ocean subsurface salinity structure in the Indian Ocean using satellite observations 被引量:1
8
作者 Jifeng QI Guimin SUN +2 位作者 Bowen XIE Delei LI Baoshu YIN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期377-389,共13页
Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS... Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques. 展开更多
关键词 machine learning convolutional neural network(CNN) ocean subsurface salinity structure(OSSS) Indian Ocean satellite observations
下载PDF
Deformation,structure and potential hazard of a landslide based on InSAR in Banbar county,Xizang(Tibet) 被引量:1
9
作者 Guan-hua Zhao Heng-xing Lan +4 位作者 Hui-yong Yin Lang-ping Li Alexander Strom Wei-feng Sun Chao-yang Tian 《China Geology》 CAS CSCD 2024年第2期203-221,共19页
The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan P... The Tibetan Plateau is characterized by complex geological conditions and a relatively fragile ecological environment.In recent years,there has been continuous development and increased human activity in the Tibetan Plateau region,leading to a rising risk of landslides.The landslide in Banbar County,Xizang(Tibet),have been perturbed by ongoing disturbances from human engineering activities,making it susceptible to instability and displaying distinct features.In this study,small baseline subset synthetic aperture radar interferometry(SBAS-InSAR)technology is used to obtain the Line of Sight(LOS)deformation velocity field in the study area,and then the slope-orientation deformation field of the landslide is obtained according to the spatial geometric relationship between the satellite’s LOS direction and the landslide.Subsequently,the landslide thickness is inverted by applying the mass conservation criterion.The results show that the movement area of the landslide is about 6.57×10^(4)m^(2),and the landslide volume is about 1.45×10^(6)m^(3).The maximum estimated thickness and average thickness of the landslide are 39 m and 22 m,respectively.The thickness estimation results align with the findings from on-site investigation,indicating the applicability of this method to large-scale earth slides.The deformation rate of the landslide exhibits a notable correlation with temperature variations,with rainfall playing a supportive role in the deformation process and displaying a certain lag.Human activities exert the most substantial influence on the spatial heterogeneity of landslide deformation,leading to the direct impact of several prominent deformation areas due to human interventions.Simultaneously,utilizing the long short-term memory(LSTM)model to predict landslide displacement,and the forecast results demonstrate the effectiveness of the LSTM model in predicting landslides that are in a continuous development and movement phase.The landslide is still active,and based on the spatial heterogeneity of landslide deformation,new recommendations have been proposed for the future management of the landslide in order to mitigate potential hazards associated with landslide instability. 展开更多
关键词 LANDSLIDE INSAR Human activity DEFORMATION structure LSTM model Engineering construction Thickness Neural network Machine learning Prediction and prevention Tibetan Plateau Geological hazards survey engineering
下载PDF
Studies on Hydrogen Bonding Network Structures of Konjac Glucomannan 被引量:15
10
作者 庞杰 孙玉敬 +3 位作者 杨幼慧 陈缘缘 陈艺勤 孙远明 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2008年第4期431-436,共6页
In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent wi... In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent with those from simulation. The results show that the hydrogen bonding network structures of KGM are stable and the key linking points of hydrogen bonding network are at the O(6) and O(2) positions on KGM ring. Moreover, acety has significant influence on hydrogen bonding network and hydrogen bonding network structures are more stable after deacetylation. 展开更多
关键词 konjac glucomannan hydrogen bonding network structure molecular dynamics
下载PDF
Synthesis and Crystal Structure of Zinc(II) Complex with Isonicotinate Containing a Three-dimensional Hydrogen-bond Network 被引量:8
11
作者 沈良 刘加庚 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2001年第4期253-255,共3页
A zinc complex, [Zn(iso)_2(H_2O)_4](iso=C_6H_4NO_2^-), was synthesized and characterized by elemental analysis, thermal analysis and IR spectrum studies. The crystal structure of the complex was determined by X-ray di... A zinc complex, [Zn(iso)_2(H_2O)_4](iso=C_6H_4NO_2^-), was synthesized and characterized by elemental analysis, thermal analysis and IR spectrum studies. The crystal structure of the complex was determined by X-ray diffraction. The crystal crystallizes in the triclinic system, molecular formula ZnC12H16N2O8, Mr=381.64, space group P with a = 6.338(1), b =6.919(1), c=9.277(1), α=96.28(1), β=104.91(1), γ=112.85(1)°, V=352.12(9)?3, Z=1, Dc=1.80g?cm-3 and F(000)=196, μ =1.791mm-1. The crystal structure was solved by direct methods for final R=0.0204 and Rw=0.0542 for 1258 observed reflections with [Fo>4σ(Fo)]. The crystal structure reveals that zinc ion is trans-octahedral with two pyridyl nitrogens and two aque oxygens at the equational positions and two aqua oxygens at the axial positions. The complex forms a three-dimensional network through intermolecular hydrogen bonds. 展开更多
关键词 ISONICOTINATE zinc complex crystal structure H-bonded network
下载PDF
Learning Bayesian network structure with immune algorithm 被引量:4
12
作者 Zhiqiang Cai Shubin Si +1 位作者 Shudong Sun Hongyan Dui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期282-291,共10页
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith... Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently. 展开更多
关键词 structure learning Bayesian network immune algorithm local optimal structure VACCINATION
下载PDF
Semi-interpenetrating network anion exchange membranes based on quaternized polyvinyl alcohol/poly(diallyldimethylammonium chloride) 被引量:3
13
作者 Xinming Du Hongyu Zhang +1 位作者 Yongjiang Yuan Zhe Wang 《Green Energy & Environment》 SCIE CSCD 2021年第5期743-750,共8页
The semi-interpenetrating network anion exchange membranes(AEMs)based on quaternized polyvinyl alcohol(QPVA)and poly(-diallyldimethylammonium chloride)(PDDA)are synthesized.The chemical cross-linking structure is form... The semi-interpenetrating network anion exchange membranes(AEMs)based on quaternized polyvinyl alcohol(QPVA)and poly(-diallyldimethylammonium chloride)(PDDA)are synthesized.The chemical cross-linking structure is formed between hydroxyl groups of QPVA and aldehyde groups of glutaraldehyde(GA),which makes PDDA more stable embed in the QPVA matrix and also improves the mechanical properties and dimensional stability of AEMs.Due to the phase separation phenomenon of AEMs swelling in water,a microporous structure may be formed in the membrane,which reduces the transmission resistance of hydroxide ions and provides a larger space for the transfer of hydroxide ions,thus improving the conductivity.The ring structure of PDDA is introduced as a cationic group to transfer hydroxide ions,and shields the nucleophilic attack of the hydroxide ions through the steric hindrance effect,which improves alkaline stability.The hydroxide conductivity of semi-interpenetrating network membrane(QPVA/PDDA0.5-GA)is 36.5 mS cm^(-1) at 60℃.And the membrane of QPVA/PDDA0.5-GA exhibits excellent mechanical property with maximum tensile strength of 19.6 MPa.After immersing into hot 3 mol L^(-1) NaOH solutions at 60℃ for 300 h,the OHconductivity remains 78%of its initial value.The semi-interpenetrating network AEMs with microporous structure exhibit good ionic conductivity,mechanical strength and alkaline durability. 展开更多
关键词 Anion exchange membrane semi-interpenetrating network CROSS-LINKED Microporous structure
下载PDF
Structure learning on Bayesian networks by finding the optimal ordering with and without priors 被引量:5
14
作者 HE Chuchao GAO Xiaoguang GUO Zhigao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1209-1227,共19页
Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based s... Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets. 展开更多
关键词 Bayesian network structure learning ordering search space graph search space prior constraint
下载PDF
Evaluation on Stability of Stope Structure Based on Nonlinear Dynamics of Coupling Artificial Neural Network 被引量:7
15
作者 Meifeng Cai Xingping Lai 《Journal of University of Science and Technology Beijing》 CSCD 2002年第1期1-4,共4页
The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activa... The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-com- puting is a practical and advanced tool for solving large-scale underground rock engineering problems. 展开更多
关键词 coupling neural network nonlinear dynamics structural stability stope parameters
下载PDF
Fault detection and accommodation via neural network and variable structure control 被引量:3
16
作者 Hao YANG Bin JIANG 《控制理论与应用(英文版)》 EI 2007年第3期253-260,共8页
This paper proposes a novel idea that classifies faults into two different kinds: serious faults and small faults, and treats them with different strategies respectively. A kind of artificial neural network (ANN) i... This paper proposes a novel idea that classifies faults into two different kinds: serious faults and small faults, and treats them with different strategies respectively. A kind of artificial neural network (ANN) is proposed for detecting serious faults, and variable structure (VS) model-following control is constructed for accommodating small faults. The proposed framework takes both advantages of qualitative way and quantitative way of fault detection and accommodation. Moreover, the uncertainty case is investigated and the VS controller is modified. Simulation results of a remotely piloted aircraft with control actuator failures illustrate the performance of the developed algorithm. 展开更多
关键词 Fault detection Fault accommodation Neural network Variable structure control
下载PDF
Structure of Chinese City Network as Driven by Technological Knowledge Flows 被引量:32
17
作者 MA Haitao FANG Chuanglin +1 位作者 PANG Bo WANG Shaojian 《Chinese Geographical Science》 SCIE CSCD 2015年第4期498-510,共13页
Based on patent cooperation data,this study used a range of city network analysis approaches in order to explore the structure of the Chinese city network which is driven by technological knowledge flows.The results r... Based on patent cooperation data,this study used a range of city network analysis approaches in order to explore the structure of the Chinese city network which is driven by technological knowledge flows.The results revealed the spatial structure,composition structure,hierarchical structure,group structure,and control structure of Chinese city network,as well as its dynamic factors.The major findings are:1) the spatial pattern presents a diamond structure,in which Wuhan is the central city;2) although the invention patent knowledge network is the main part of the broader inter-city innovative cooperation network,it is weaker than the utility model patent;3) as the senior level cities,Beijing,Shanghai and the cities in the Zhujiang(Pearl) River Delta Region show a strong capability of both spreading and controlling technological knowledge;4) whilst a national technology alliance has preliminarily formed,regional alliances have not been adequately established;5) even though the cooperation level amongst weak connection cities is not high,such cities still play an important role in the network as a result of their location within ′structural holes′ in the network;and 6) the major driving forces facilitating inter-city technological cooperation are geographical proximity,hierarchical proximity and technological proximity. 展开更多
关键词 technological knowledge flows patent cooperation city networks network structure structure holes cohesive subgroup
下载PDF
Spatial Structure,Hierarchy and Formation Mechanisms of Scientific Collaboration Networks:Evidence of the Belt and Road Regions 被引量:8
18
作者 GU Weinan LIU Hui 《Chinese Geographical Science》 SCIE CSCD 2020年第6期959-975,共17页
Scientific collaboration has become an important part of the people-to-people exchanges in the Belt and Road initiative,and remarkable progress has been made since 2013.Taking the 65 countries along the Belt and Road(... Scientific collaboration has become an important part of the people-to-people exchanges in the Belt and Road initiative,and remarkable progress has been made since 2013.Taking the 65 countries along the Belt and Road(BRI countries)as the research areas and using collaborated Web of Science(WOS)core collection papers to construct an international scientific collaboration matrix,the paper explores the spatial structure,hierarchy and formation mechanisms of scientific collaboration networks of 65 countries along the Belt and Road.The results show that:1)Beyond the Belt and Road regions(BRI regions),Central&Eastern Europe,China and West Asia&North Africa have formed a situation in which they all have the most external links with other countries beyond BRI regions.China has the dominant role over other BRI countries in generating scientific links.The overall spatial structure has changed to a skeleton structure consisting of many dense regions,such as Europe,North America,East Asia and Oceania.2)Within the Belt and Road regions,Central&Eastern Europe has become the largest collaboration partner with other sub-regions in BRI countries.The spatial structure of scientific collaboration networks has transformed from the‘dual core’composed of China and the Central&Eastern Europe region,to the‘multi-polarization’composed of‘one zone and multi-points’.3)The hierarchical structure of scientific collaboration networks presents a typical‘core-periphery’structure,and changes from‘single core’to‘double cores’.4)Among the formation mechanisms of scientific collaboration networks,scientific research strength and social proximity play the most important roles,while geographical distance gradually weakens the hindrance to scientific collaboration. 展开更多
关键词 scientific collaboration networks spatial structure HIERARCHY formation mechanisms the Belt and Road regions
下载PDF
The Design of Water-reusing Network with a Hybrid Structure Through Mathematical Programming 被引量:4
19
作者 刘永忠 段海涛 冯霄 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第1期1-10,共10页
A new design method for a water-reusing network, with a hybrid structure, to reduce the complexity of the network and to minimize freshwater consumption, is proposed. The unique feature of the methodology proposed .i... A new design method for a water-reusing network, with a hybrid structure, to reduce the complexity of the network and to minimize freshwater consumption, is proposed. The unique feature of the methodology proposed .in this article is to control the complexity of the water network by regulation of the control number in a water-reusing system. It combines the advantages of a conventional water-reusing network and a water-reusing net work with internal water mains. To illustrate the proposed method, a single contaminant system and a multiple contaminant system serve as examples of the problems. 展开更多
关键词 water-reusing network internal water main hybrid structure OPTIMIZATION
下载PDF
A Dynamic-Bayesian-Networks-Based Resilience Assessment Approach of Structure Systems: Subsea Oil and Gas Pipelines as A Case Study 被引量:3
20
作者 CAI Bao-ping ZHANG Yan-ping +5 位作者 YUAN Xiao-bing GAO Chun-tan LIU Yong-hong CHEN Guo-ming LIU Zeng-kai JI Ren-jie 《China Ocean Engineering》 SCIE EI CSCD 2020年第5期597-607,共11页
Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metric... Under unanticipated natural disasters, any failure of structure components may cause the crash of an entire structure system. Resilience is an important metric for the structure system. Although many resilience metrics and assessment approaches are proposed for engineering system, they are not suitable for complex structure systems, since the failure mechanisms of them are different under the influences of natural disasters. This paper proposes a novel resilience assessment metric for structure system from a macroscopic perspective, named structure resilience, and develops a corresponding assessment approach based on remaining useful life of key components. Dynamic Bayesian networks(DBNs) and Markov are applied to establish the resilience assessment model. In the degradation process, natural degradation and accelerated degradation are modelled by using Bayesian networks, and then coupled by using DBNs. In the recovery process, the model is established by combining Markov and DBNs. Subsea oil and gas pipelines are adopted to demonstrate the application of the proposed structure metric and assessment approach. 展开更多
关键词 structure resilience structure system remaining useful life dynamic Bayesian networks
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部