This paper stresses the theoretical nature of constructing the optimal derivative-free iterations. We give necessary and sufficient conditions for derivative-free three-point iterations with the eighth-order of conver...This paper stresses the theoretical nature of constructing the optimal derivative-free iterations. We give necessary and sufficient conditions for derivative-free three-point iterations with the eighth-order of convergence. We also establish the connection of derivative-free and derivative presence three-point iterations. The use of the sufficient convergence conditions allows us to design wide class of optimal derivative-free iterations. The proposed family of iterations includes not only existing methods but also new methods with a higher order of convergence.展开更多
Pattern search algorithms is one of most frequently used methods which were designed to solve the derivative-free optimization problems. Such methods get growing need with the development of science, engineering, econ...Pattern search algorithms is one of most frequently used methods which were designed to solve the derivative-free optimization problems. Such methods get growing need with the development of science, engineering, economy and so on. Inspired by the idea of Hooke and Jeeves, we introduced an integer m in the algorithm which controls the number of steps of iteration update. We mean along the descent direction to allow the algorithm to?go ahead m steps at most to explore whether we can get better solution further. The experiment proved the strategy’s efficiency.展开更多
This paper proposes an arlene scaling derivative-free trust region method with interior backtracking technique for bounded-constrained nonlinear programming. This method is designed to get a stationary point for such ...This paper proposes an arlene scaling derivative-free trust region method with interior backtracking technique for bounded-constrained nonlinear programming. This method is designed to get a stationary point for such a problem with polynomial interpolation models instead of the objective function in trust region subproblem. Combined with both trust region strategy and line search technique, at each iteration, the affine scaling derivative-free trust region subproblem generates a backtracking direction in order to obtain a new accepted interior feasible step. Global convergence and fast local convergence properties are established under some reasonable conditions. Some numerical results are also given to show the effectiveness of the proposed algorithm.展开更多
Biochemical systems have important practical applications, in particular to understanding critical intra-cellular processes. Often biochemical kinetic models represent cellular processes as systems of chemical reactio...Biochemical systems have important practical applications, in particular to understanding critical intra-cellular processes. Often biochemical kinetic models represent cellular processes as systems of chemical reactions, traditionally modeled by the deterministic reaction rate equations. In the cellular environment, many biological processes are inherently stochastic. The stochastic fluctuations due to the presence of some low molecular populations may have a great impact on the biochemical system behavior. Then, stochastic models are required for an accurate description of the system dynamics. An important stochastic model of biochemical kinetics is the Chemical Langevin Equation. In this work, we provide a numerical method for approximating the solution of the Chemical Langevin Equation, namely the derivative-free Milstein scheme. The method is compared with the widely used strategy for this class of problems, the Milstein method. As opposed to the Milstein scheme, the proposed strategy has the advantage that it does not require the calculation of exact derivatives, while having the same strong order of accuracy as the Milstein scheme. Therefore it may be used for an automatic simulation of the numerical solution of the Chemical Langevin Equation. The tests on several models of practical interest show that our method performs very well.展开更多
Based on a class of functions, which generalize the squared Fischer-Burmeister NCP function and have many desirable properties as the latter function has, we reformulate nonlinear complementarity problem (NCP for shor...Based on a class of functions, which generalize the squared Fischer-Burmeister NCP function and have many desirable properties as the latter function has, we reformulate nonlinear complementarity problem (NCP for short) as an equivalent unconstrained optimization problem, for which we propose a derivative-free de- scent method in monotone case. We show its global convergence under some mild conditions. If F, the function involved in NCP, is Ro-function, the optimization problem has bounded level sets. A local property of the merit function is discussed. Finally, we report some numerical results.展开更多
文摘This paper stresses the theoretical nature of constructing the optimal derivative-free iterations. We give necessary and sufficient conditions for derivative-free three-point iterations with the eighth-order of convergence. We also establish the connection of derivative-free and derivative presence three-point iterations. The use of the sufficient convergence conditions allows us to design wide class of optimal derivative-free iterations. The proposed family of iterations includes not only existing methods but also new methods with a higher order of convergence.
文摘Pattern search algorithms is one of most frequently used methods which were designed to solve the derivative-free optimization problems. Such methods get growing need with the development of science, engineering, economy and so on. Inspired by the idea of Hooke and Jeeves, we introduced an integer m in the algorithm which controls the number of steps of iteration update. We mean along the descent direction to allow the algorithm to?go ahead m steps at most to explore whether we can get better solution further. The experiment proved the strategy’s efficiency.
基金supported by the National Science Foundation of China under Grant No.11371253
文摘This paper proposes an arlene scaling derivative-free trust region method with interior backtracking technique for bounded-constrained nonlinear programming. This method is designed to get a stationary point for such a problem with polynomial interpolation models instead of the objective function in trust region subproblem. Combined with both trust region strategy and line search technique, at each iteration, the affine scaling derivative-free trust region subproblem generates a backtracking direction in order to obtain a new accepted interior feasible step. Global convergence and fast local convergence properties are established under some reasonable conditions. Some numerical results are also given to show the effectiveness of the proposed algorithm.
文摘Biochemical systems have important practical applications, in particular to understanding critical intra-cellular processes. Often biochemical kinetic models represent cellular processes as systems of chemical reactions, traditionally modeled by the deterministic reaction rate equations. In the cellular environment, many biological processes are inherently stochastic. The stochastic fluctuations due to the presence of some low molecular populations may have a great impact on the biochemical system behavior. Then, stochastic models are required for an accurate description of the system dynamics. An important stochastic model of biochemical kinetics is the Chemical Langevin Equation. In this work, we provide a numerical method for approximating the solution of the Chemical Langevin Equation, namely the derivative-free Milstein scheme. The method is compared with the widely used strategy for this class of problems, the Milstein method. As opposed to the Milstein scheme, the proposed strategy has the advantage that it does not require the calculation of exact derivatives, while having the same strong order of accuracy as the Milstein scheme. Therefore it may be used for an automatic simulation of the numerical solution of the Chemical Langevin Equation. The tests on several models of practical interest show that our method performs very well.
基金the National Natural Science Foundation of China
文摘Based on a class of functions, which generalize the squared Fischer-Burmeister NCP function and have many desirable properties as the latter function has, we reformulate nonlinear complementarity problem (NCP for short) as an equivalent unconstrained optimization problem, for which we propose a derivative-free de- scent method in monotone case. We show its global convergence under some mild conditions. If F, the function involved in NCP, is Ro-function, the optimization problem has bounded level sets. A local property of the merit function is discussed. Finally, we report some numerical results.