This paper presents an end-to-end deep learning method to solve geometry problems via feature learning and contrastive learning of multimodal data.A key challenge in solving geometry problems using deep learning is to...This paper presents an end-to-end deep learning method to solve geometry problems via feature learning and contrastive learning of multimodal data.A key challenge in solving geometry problems using deep learning is to automatically adapt to the task of understanding single-modal and multimodal problems.Existing methods either focus on single-modal ormultimodal problems,and they cannot fit each other.A general geometry problem solver shouldobviouslybe able toprocess variousmodalproblems at the same time.Inthispaper,a shared feature-learning model of multimodal data is adopted to learn the unified feature representation of text and image,which can solve the heterogeneity issue between multimodal geometry problems.A contrastive learning model of multimodal data enhances the semantic relevance betweenmultimodal features and maps them into a unified semantic space,which can effectively adapt to both single-modal and multimodal downstream tasks.Based on the feature extraction and fusion of multimodal data,a proposed geometry problem solver uses relation extraction,theorem reasoning,and problem solving to present solutions in a readable way.Experimental results show the effectiveness of the method.展开更多
BACKGROUND Breast non-mass-like lesions(NMLs)account for 9.2%of all breast lesions.The specificity of the ultrasound diagnosis of NMLs is low,and it cannot be objectively classified according to the 5th Edition of the...BACKGROUND Breast non-mass-like lesions(NMLs)account for 9.2%of all breast lesions.The specificity of the ultrasound diagnosis of NMLs is low,and it cannot be objectively classified according to the 5th Edition of the Breast Imaging Reporting and Data System(BI-RADS).Contrast-enhanced ultrasound(CEUS)can help to differentiate and classify breast lesions but there are few studies on NMLs alone.AIM To analyze the features of benign and malignant breast NMLs in grayscale ultrasonography(US),color Doppler flow imaging(CDFI)and CEUS,and to explore the efficacy of the combined diagnosis of NMLs and the effect of CEUS on the BI-RADS classification of NMLs.METHODS A total of 51 breast NMLs verified by pathology were analyzed in our hospital from January 2017 to April 2019.All lesions were examined by US,CDFI and CEUS,and their features from those examinations were analyzed.With pathology as the gold standard,binary logic regression was used to analyze the independent risk factors for malignant breast NMLs,and a regression equation was established to calculate the efficiency of combined diagnosis.Based on the regression equation,the combined diagnostic efficiency of US combined with CEUS(US+CEUS)was determined.The initial BI-RADS-US classification of NMLs was adjusted according to the independent risk factors identified by CEUS,and the diagnostic efficiency of CEUS combined with BI-RADS(CEUS+BI-RADS)was calculated based on the results.ROC curves were drawn to compare the diagnostic values of the three methods,including US,US+CEUS,and CEUS+BI-RADS,for benign and malignant NMLs.RESULTS Microcalcification,enhancement time,enhancement intensity,lesion scope,and peripheral blood vessels were significantly different between benign and malignant NMLs.Among these features,microcalcification,higher enhancement,and lesion scope were identified as independent risk factors for malignant breast NMLs.When US,US+CEUS,and CEUS+BI-RADS were used to identify the benign and malignant breast NMLs,their sensitivity rates were 82.6%,91.3%,and 87.0%,respectively;their specificity rates were 71.4%,89.2%,and 92.9%,respectively;their positive predictive values were 70.4%,87.5%,and 90.9%,respectively;their negative predictive values were 83.3%,92.6%,and 89.7%,respectively;their accuracy rates were 76.5%,90.2%,and 90.2%,respectively;and their corresponding areas under ROC curves were 0.752,0.877 and 0.903,respectively.Z tests showed that the area under the ROC curve of US was statistically smaller than that of US+CEUS and CEUS+BI-RADS,and there was no statistical difference between US+CEUS and CEUS+BI-RADS.CONCLUSION US combined with CEUS can improve diagnostic efficiency for NMLs.The adjustment of the BI-RADS classification according to the features of contrastenhanced US of NMLs enables the diagnostic results to be simple and intuitive,facilitates the management of NMLs,and effectively reduces the incidence of unnecessary biopsy.展开更多
Diagnosing gastrointestinal cancer by classical means is a hazardous procedure.Years have witnessed several computerized solutions for stomach disease detection and classification.However,the existing techniques faced...Diagnosing gastrointestinal cancer by classical means is a hazardous procedure.Years have witnessed several computerized solutions for stomach disease detection and classification.However,the existing techniques faced challenges,such as irrelevant feature extraction,high similarity among different disease symptoms,and the least-important features from a single source.This paper designed a new deep learning-based architecture based on the fusion of two models,Residual blocks and Auto Encoder.First,the Hyper-Kvasir dataset was employed to evaluate the proposed work.The research selected a pre-trained convolutional neural network(CNN)model and improved it with several residual blocks.This process aims to improve the learning capability of deep models and lessen the number of parameters.Besides,this article designed an Auto-Encoder-based network consisting of five convolutional layers in the encoder stage and five in the decoder phase.The research selected the global average pooling and convolutional layers for the feature extraction optimized by a hybrid Marine Predator optimization and Slime Mould optimization algorithm.These features of both models are fused using a novel fusion technique that is later classified using the Artificial Neural Network classifier.The experiment worked on the HyperKvasir dataset,which consists of 23 stomach-infected classes.At last,the proposed method obtained an improved accuracy of 93.90%on this dataset.Comparison is also conducted with some recent techniques and shows that the proposed method’s accuracy is improved.展开更多
Manual diagnosis of brain tumors usingmagnetic resonance images(MRI)is a hectic process and time-consuming.Also,it always requires an expert person for the diagnosis.Therefore,many computer-controlled methods for diag...Manual diagnosis of brain tumors usingmagnetic resonance images(MRI)is a hectic process and time-consuming.Also,it always requires an expert person for the diagnosis.Therefore,many computer-controlled methods for diagnosing and classifying brain tumors have been introduced in the literature.This paper proposes a novel multimodal brain tumor classification framework based on two-way deep learning feature extraction and a hybrid feature optimization algorithm.NasNet-Mobile,a pre-trained deep learning model,has been fine-tuned and twoway trained on original and enhancedMRI images.The haze-convolutional neural network(haze-CNN)approach is developed and employed on the original images for contrast enhancement.Next,transfer learning(TL)is utilized for training two-way fine-tuned models and extracting feature vectors from the global average pooling layer.Then,using a multiset canonical correlation analysis(CCA)method,features of both deep learning models are fused into a single feature matrix—this technique aims to enhance the information in terms of features for better classification.Although the information was increased,computational time also jumped.This issue is resolved using a hybrid feature optimization algorithm that chooses the best classification features.The experiments were done on two publicly available datasets—BraTs2018 and BraTs2019—and yielded accuracy rates of 94.8%and 95.7%,respectively.The proposedmethod is comparedwith several recent studies andoutperformed inaccuracy.In addition,we analyze the performance of each middle step of the proposed approach and find the selection technique strengthens the proposed framework.展开更多
Similarity measurement is one of key operations to retrieve “desired” images from an image database. As a famous psychological similarity measure approach, the Feature Contrast (FC) model is defined as a linear comb...Similarity measurement is one of key operations to retrieve “desired” images from an image database. As a famous psychological similarity measure approach, the Feature Contrast (FC) model is defined as a linear combination of both common and distinct features. In this paper, an adaptive feature contrast (AdaFC) model is proposed to measure similarity between satellite images for image retrieval. In the AdaFC, an adaptive function is used to model a variable role of distinct features in the similarity measurement. Specifically, given some distinct features in a satellite image, e.g., a COAST image, they might play a significant role when the image is compared with an image including different semantics, e.g., a SEA image, and might be trivial when it is compared with a third image including same semantics, e.g., another COAST image. Experimental results on satellite images show that the proposed model can consistently improve similarity retrieval effectiveness of satellite images including multiple geo-objects, for example COAST images.展开更多
This paper is to explore the syntactic features and thought patterns among English,Chinese and the Shui language,discussing this topic from macroscopic,giving a brief contrast and comparison on macroscopic of English,...This paper is to explore the syntactic features and thought patterns among English,Chinese and the Shui language,discussing this topic from macroscopic,giving a brief contrast and comparison on macroscopic of English,Chinese and the Shui language.展开更多
Artificial intelligence aids for healthcare have received a great deal of attention.Approximately one million patients with gastrointestinal diseases have been diagnosed via wireless capsule endoscopy(WCE).Early diagn...Artificial intelligence aids for healthcare have received a great deal of attention.Approximately one million patients with gastrointestinal diseases have been diagnosed via wireless capsule endoscopy(WCE).Early diagnosis facilitates appropriate treatment and saves lives.Deep learning-based techniques have been used to identify gastrointestinal ulcers,bleeding sites,and polyps.However,small lesions may be misclassified.We developed a deep learning-based best-feature method to classify various stomach diseases evident in WCE images.Initially,we use hybrid contrast enhancement to distinguish diseased from normal regions.Then,a pretrained model is fine-tuned,and further training is done via transfer learning.Deep features are extracted from the last two layers and fused using a vector length-based approach.We improve the genetic algorithm using a fitness function and kurtosis to select optimal features that are graded by a classifier.We evaluate a database containing 24,000 WCE images of ulcers,bleeding sites,polyps,and healthy tissue.The cubic support vector machine classifier was optimal;the average accuracy was 99%.展开更多
目的:探讨高帧率超声造影(high frame rate contrast-enhanced ultrasound,H-CEUS)定性特征联合定量参数对前列腺良恶性疾病的鉴别诊断价值。方法:选取2022年02月至2023年01月在我院就诊疑似前列腺癌(prostate cancer,PCa)并进行前列腺...目的:探讨高帧率超声造影(high frame rate contrast-enhanced ultrasound,H-CEUS)定性特征联合定量参数对前列腺良恶性疾病的鉴别诊断价值。方法:选取2022年02月至2023年01月在我院就诊疑似前列腺癌(prostate cancer,PCa)并进行前列腺穿刺活检的患者60例(共67个病灶),根据病理结果分为良性组和恶性组,穿刺前行经直肠常规超声及H-CEUS,记录前列腺基本情况、造影定性特征并绘制时间强度曲线获得定量分析参数,比较两组间差异;以病理结果为“金标准”绘制受试者工作特征(receiver operating characteristic,ROC)曲线,应用Z检验比较H-CEUS定性特征、定量参数单独及联合应用对于前列腺病变良恶性的诊断效能。结果:与良性组相比,恶性组H-CEUS定性特征为供血动脉形态不规则(1/33 vs 11/34)及走形异常(3/33 vs 20/34)、快进(9/33 vs 29/34)、高增强(4/33 vs 25/34)、造影剂分布不均匀(9/33 vs 13/34)的比例较大,差异具有统计学意义(χ2=30.41、18.37、22.96、25.72、8.06,P<0.001、<0.001、<0.001、<0.001、=0.005);定量参数PCa较良性组造影到达时间早[(16.93±3.69)s vs(21.54±3.86)s],峰值强度[(48.8±5.58)dB vs(45.77±4.42)dB]、强度差[4.87(0.87,8.03)vs-0.44(-2.22,2.35)]及强度比[(1.15±0.24)vs(1.01±0.97)]的值较良性大,差异具有统计学意义(t/U=4.24、-2.324、151、-2.535,P<0.001、=0.025、=0.004、=0.015)。ROC曲线示H-CEUS定性及定量联合应用的AUC=0.938,截断值为0.44时诊断效能最佳,约登指数、敏感度、特异度、准确度、阳性预测值及阴性预测值为0.750、89.29%、85.71%、87.75%、89.3%、85.7%。根据净重新分类指数NRI值,联合应用对定性特征及定量参数均为正改善(P<0.05)。结论:H-CEUS应用于前列腺有助于观察造影灌注细节、分析成像特征,对于前列腺良恶性疾病具有较好的鉴别诊断能力,将造影灌注定性特征与定量参数结合的诊断效能优于单独应用。展开更多
基金supported by the NationalNatural Science Foundation of China (No.62107014,Jian P.,62177025,He B.)the Key R&D and Promotion Projects of Henan Province (No.212102210147,Jian P.)Innovative Education Program for Graduate Students at North China University of Water Resources and Electric Power,China (No.YK-2021-99,Guo F.).
文摘This paper presents an end-to-end deep learning method to solve geometry problems via feature learning and contrastive learning of multimodal data.A key challenge in solving geometry problems using deep learning is to automatically adapt to the task of understanding single-modal and multimodal problems.Existing methods either focus on single-modal ormultimodal problems,and they cannot fit each other.A general geometry problem solver shouldobviouslybe able toprocess variousmodalproblems at the same time.Inthispaper,a shared feature-learning model of multimodal data is adopted to learn the unified feature representation of text and image,which can solve the heterogeneity issue between multimodal geometry problems.A contrastive learning model of multimodal data enhances the semantic relevance betweenmultimodal features and maps them into a unified semantic space,which can effectively adapt to both single-modal and multimodal downstream tasks.Based on the feature extraction and fusion of multimodal data,a proposed geometry problem solver uses relation extraction,theorem reasoning,and problem solving to present solutions in a readable way.Experimental results show the effectiveness of the method.
文摘BACKGROUND Breast non-mass-like lesions(NMLs)account for 9.2%of all breast lesions.The specificity of the ultrasound diagnosis of NMLs is low,and it cannot be objectively classified according to the 5th Edition of the Breast Imaging Reporting and Data System(BI-RADS).Contrast-enhanced ultrasound(CEUS)can help to differentiate and classify breast lesions but there are few studies on NMLs alone.AIM To analyze the features of benign and malignant breast NMLs in grayscale ultrasonography(US),color Doppler flow imaging(CDFI)and CEUS,and to explore the efficacy of the combined diagnosis of NMLs and the effect of CEUS on the BI-RADS classification of NMLs.METHODS A total of 51 breast NMLs verified by pathology were analyzed in our hospital from January 2017 to April 2019.All lesions were examined by US,CDFI and CEUS,and their features from those examinations were analyzed.With pathology as the gold standard,binary logic regression was used to analyze the independent risk factors for malignant breast NMLs,and a regression equation was established to calculate the efficiency of combined diagnosis.Based on the regression equation,the combined diagnostic efficiency of US combined with CEUS(US+CEUS)was determined.The initial BI-RADS-US classification of NMLs was adjusted according to the independent risk factors identified by CEUS,and the diagnostic efficiency of CEUS combined with BI-RADS(CEUS+BI-RADS)was calculated based on the results.ROC curves were drawn to compare the diagnostic values of the three methods,including US,US+CEUS,and CEUS+BI-RADS,for benign and malignant NMLs.RESULTS Microcalcification,enhancement time,enhancement intensity,lesion scope,and peripheral blood vessels were significantly different between benign and malignant NMLs.Among these features,microcalcification,higher enhancement,and lesion scope were identified as independent risk factors for malignant breast NMLs.When US,US+CEUS,and CEUS+BI-RADS were used to identify the benign and malignant breast NMLs,their sensitivity rates were 82.6%,91.3%,and 87.0%,respectively;their specificity rates were 71.4%,89.2%,and 92.9%,respectively;their positive predictive values were 70.4%,87.5%,and 90.9%,respectively;their negative predictive values were 83.3%,92.6%,and 89.7%,respectively;their accuracy rates were 76.5%,90.2%,and 90.2%,respectively;and their corresponding areas under ROC curves were 0.752,0.877 and 0.903,respectively.Z tests showed that the area under the ROC curve of US was statistically smaller than that of US+CEUS and CEUS+BI-RADS,and there was no statistical difference between US+CEUS and CEUS+BI-RADS.CONCLUSION US combined with CEUS can improve diagnostic efficiency for NMLs.The adjustment of the BI-RADS classification according to the features of contrastenhanced US of NMLs enables the diagnostic results to be simple and intuitive,facilitates the management of NMLs,and effectively reduces the incidence of unnecessary biopsy.
基金supported by“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP),granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea(No.20204010600090)Supporting Project Number(PNURSP2023R387),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Diagnosing gastrointestinal cancer by classical means is a hazardous procedure.Years have witnessed several computerized solutions for stomach disease detection and classification.However,the existing techniques faced challenges,such as irrelevant feature extraction,high similarity among different disease symptoms,and the least-important features from a single source.This paper designed a new deep learning-based architecture based on the fusion of two models,Residual blocks and Auto Encoder.First,the Hyper-Kvasir dataset was employed to evaluate the proposed work.The research selected a pre-trained convolutional neural network(CNN)model and improved it with several residual blocks.This process aims to improve the learning capability of deep models and lessen the number of parameters.Besides,this article designed an Auto-Encoder-based network consisting of five convolutional layers in the encoder stage and five in the decoder phase.The research selected the global average pooling and convolutional layers for the feature extraction optimized by a hybrid Marine Predator optimization and Slime Mould optimization algorithm.These features of both models are fused using a novel fusion technique that is later classified using the Artificial Neural Network classifier.The experiment worked on the HyperKvasir dataset,which consists of 23 stomach-infected classes.At last,the proposed method obtained an improved accuracy of 93.90%on this dataset.Comparison is also conducted with some recent techniques and shows that the proposed method’s accuracy is improved.
基金supported by“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)Granted Financial Resources from theMinistry of Trade,Industry&Energy,Republic of Korea(No.20204010600090).
文摘Manual diagnosis of brain tumors usingmagnetic resonance images(MRI)is a hectic process and time-consuming.Also,it always requires an expert person for the diagnosis.Therefore,many computer-controlled methods for diagnosing and classifying brain tumors have been introduced in the literature.This paper proposes a novel multimodal brain tumor classification framework based on two-way deep learning feature extraction and a hybrid feature optimization algorithm.NasNet-Mobile,a pre-trained deep learning model,has been fine-tuned and twoway trained on original and enhancedMRI images.The haze-convolutional neural network(haze-CNN)approach is developed and employed on the original images for contrast enhancement.Next,transfer learning(TL)is utilized for training two-way fine-tuned models and extracting feature vectors from the global average pooling layer.Then,using a multiset canonical correlation analysis(CCA)method,features of both deep learning models are fused into a single feature matrix—this technique aims to enhance the information in terms of features for better classification.Although the information was increased,computational time also jumped.This issue is resolved using a hybrid feature optimization algorithm that chooses the best classification features.The experiments were done on two publicly available datasets—BraTs2018 and BraTs2019—and yielded accuracy rates of 94.8%and 95.7%,respectively.The proposedmethod is comparedwith several recent studies andoutperformed inaccuracy.In addition,we analyze the performance of each middle step of the proposed approach and find the selection technique strengthens the proposed framework.
文摘Similarity measurement is one of key operations to retrieve “desired” images from an image database. As a famous psychological similarity measure approach, the Feature Contrast (FC) model is defined as a linear combination of both common and distinct features. In this paper, an adaptive feature contrast (AdaFC) model is proposed to measure similarity between satellite images for image retrieval. In the AdaFC, an adaptive function is used to model a variable role of distinct features in the similarity measurement. Specifically, given some distinct features in a satellite image, e.g., a COAST image, they might play a significant role when the image is compared with an image including different semantics, e.g., a SEA image, and might be trivial when it is compared with a third image including same semantics, e.g., another COAST image. Experimental results on satellite images show that the proposed model can consistently improve similarity retrieval effectiveness of satellite images including multiple geo-objects, for example COAST images.
文摘This paper is to explore the syntactic features and thought patterns among English,Chinese and the Shui language,discussing this topic from macroscopic,giving a brief contrast and comparison on macroscopic of English,Chinese and the Shui language.
基金supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)the Soonchunhyang University Research Fund.
文摘Artificial intelligence aids for healthcare have received a great deal of attention.Approximately one million patients with gastrointestinal diseases have been diagnosed via wireless capsule endoscopy(WCE).Early diagnosis facilitates appropriate treatment and saves lives.Deep learning-based techniques have been used to identify gastrointestinal ulcers,bleeding sites,and polyps.However,small lesions may be misclassified.We developed a deep learning-based best-feature method to classify various stomach diseases evident in WCE images.Initially,we use hybrid contrast enhancement to distinguish diseased from normal regions.Then,a pretrained model is fine-tuned,and further training is done via transfer learning.Deep features are extracted from the last two layers and fused using a vector length-based approach.We improve the genetic algorithm using a fitness function and kurtosis to select optimal features that are graded by a classifier.We evaluate a database containing 24,000 WCE images of ulcers,bleeding sites,polyps,and healthy tissue.The cubic support vector machine classifier was optimal;the average accuracy was 99%.
文摘目的:探讨高帧率超声造影(high frame rate contrast-enhanced ultrasound,H-CEUS)定性特征联合定量参数对前列腺良恶性疾病的鉴别诊断价值。方法:选取2022年02月至2023年01月在我院就诊疑似前列腺癌(prostate cancer,PCa)并进行前列腺穿刺活检的患者60例(共67个病灶),根据病理结果分为良性组和恶性组,穿刺前行经直肠常规超声及H-CEUS,记录前列腺基本情况、造影定性特征并绘制时间强度曲线获得定量分析参数,比较两组间差异;以病理结果为“金标准”绘制受试者工作特征(receiver operating characteristic,ROC)曲线,应用Z检验比较H-CEUS定性特征、定量参数单独及联合应用对于前列腺病变良恶性的诊断效能。结果:与良性组相比,恶性组H-CEUS定性特征为供血动脉形态不规则(1/33 vs 11/34)及走形异常(3/33 vs 20/34)、快进(9/33 vs 29/34)、高增强(4/33 vs 25/34)、造影剂分布不均匀(9/33 vs 13/34)的比例较大,差异具有统计学意义(χ2=30.41、18.37、22.96、25.72、8.06,P<0.001、<0.001、<0.001、<0.001、=0.005);定量参数PCa较良性组造影到达时间早[(16.93±3.69)s vs(21.54±3.86)s],峰值强度[(48.8±5.58)dB vs(45.77±4.42)dB]、强度差[4.87(0.87,8.03)vs-0.44(-2.22,2.35)]及强度比[(1.15±0.24)vs(1.01±0.97)]的值较良性大,差异具有统计学意义(t/U=4.24、-2.324、151、-2.535,P<0.001、=0.025、=0.004、=0.015)。ROC曲线示H-CEUS定性及定量联合应用的AUC=0.938,截断值为0.44时诊断效能最佳,约登指数、敏感度、特异度、准确度、阳性预测值及阴性预测值为0.750、89.29%、85.71%、87.75%、89.3%、85.7%。根据净重新分类指数NRI值,联合应用对定性特征及定量参数均为正改善(P<0.05)。结论:H-CEUS应用于前列腺有助于观察造影灌注细节、分析成像特征,对于前列腺良恶性疾病具有较好的鉴别诊断能力,将造影灌注定性特征与定量参数结合的诊断效能优于单独应用。