Let X be a real Banach space and A : X→ 2x a bounded uniformly continuous Φ-strongly accretive multivalued mapping. For any f ∈ X, Mann and Ishikawa iterative processes with errors converge strongly to the unique s...Let X be a real Banach space and A : X→ 2x a bounded uniformly continuous Φ-strongly accretive multivalued mapping. For any f ∈ X, Mann and Ishikawa iterative processes with errors converge strongly to the unique solution of Ax (?) f. The conclusion in this paper weakens the stronger conditions about errors in Chidume and Moore's theorem (J. Math. Anal. Appl, 245(2000), 142-160).展开更多
The asymptotic and stable properties of general stochastic functional differential equations are investigated by the multiple Lyapunov function method, which admits non-negative up-per bounds for the stochastic deriva...The asymptotic and stable properties of general stochastic functional differential equations are investigated by the multiple Lyapunov function method, which admits non-negative up-per bounds for the stochastic derivatives of the Lyapunov functions, a theorem for asymptotic properties of the LaSal e-type described by limit sets of the solutions of the equations is obtained. Based on the asymptotic properties to the limit set, a theorem of asymptotic stability of the stochastic functional differential equations is also established, which enables us to construct the Lyapunov functions more easily in application. Particularly, the wel-known classical theorem on stochastic stability is a special case of our result, the operator LV is not required to be negative which is more general to fulfil and the stochastic perturbation plays an important role in it. These show clearly the improvement of the traditional method to find the Lyapunov functions. A numerical simulation example is given to il ustrate the usage of the method.展开更多
Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of the solution...Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of the solution. Moreover, from them many effective criteria on stochastic asymptotic stability, which enable us to construct the Lyapunov functions much more easily in application, were obtained, The results show that the wellknown classical theorem on stochastic asymptotic stability is a special case of our more general results. In the end, application in stochastic Hopfield neural networks is given to verify our results.展开更多
In this paper, we introduce a split generalized equilibrium problem and consider some iterative sequences to find a solution of the equilibrium problem such that its image under a given bounded linear operator is a so...In this paper, we introduce a split generalized equilibrium problem and consider some iterative sequences to find a solution of the equilibrium problem such that its image under a given bounded linear operator is a solution of another equilibrium problem. We obtain some strong and weak convergence theorems.展开更多
文摘Let X be a real Banach space and A : X→ 2x a bounded uniformly continuous Φ-strongly accretive multivalued mapping. For any f ∈ X, Mann and Ishikawa iterative processes with errors converge strongly to the unique solution of Ax (?) f. The conclusion in this paper weakens the stronger conditions about errors in Chidume and Moore's theorem (J. Math. Anal. Appl, 245(2000), 142-160).
基金supported by the National Natural Science Foundation of China(61273126)the Natural Science Foundation of Guangdong Province(10251064101000008+1 种基金S201210009675)the Fundamental Research Funds for the Central Universities(2012ZM0059)
文摘The asymptotic and stable properties of general stochastic functional differential equations are investigated by the multiple Lyapunov function method, which admits non-negative up-per bounds for the stochastic derivatives of the Lyapunov functions, a theorem for asymptotic properties of the LaSal e-type described by limit sets of the solutions of the equations is obtained. Based on the asymptotic properties to the limit set, a theorem of asymptotic stability of the stochastic functional differential equations is also established, which enables us to construct the Lyapunov functions more easily in application. Particularly, the wel-known classical theorem on stochastic stability is a special case of our result, the operator LV is not required to be negative which is more general to fulfil and the stochastic perturbation plays an important role in it. These show clearly the improvement of the traditional method to find the Lyapunov functions. A numerical simulation example is given to il ustrate the usage of the method.
基金Project supported by the National Natural Science Foundation of China (Nos.60574025, 60074008)the Natural Science Foundation of Hubei Province of China (No.2004ABA055)
文摘Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of the solution. Moreover, from them many effective criteria on stochastic asymptotic stability, which enable us to construct the Lyapunov functions much more easily in application, were obtained, The results show that the wellknown classical theorem on stochastic asymptotic stability is a special case of our more general results. In the end, application in stochastic Hopfield neural networks is given to verify our results.
基金supported by the Natural Science Foundation of Fujian Province under grant No.2014J01008
文摘In this paper, we introduce a split generalized equilibrium problem and consider some iterative sequences to find a solution of the equilibrium problem such that its image under a given bounded linear operator is a solution of another equilibrium problem. We obtain some strong and weak convergence theorems.