Steel slag is characterized by high strength,good wear resistance and micro-expansion.This study aims at exploring the potential of steel slag in cement stabilized aggregates,mainly including mechanical properties,shr...Steel slag is characterized by high strength,good wear resistance and micro-expansion.This study aims at exploring the potential of steel slag in cement stabilized aggregates,mainly including mechanical properties,shrinkage and compensation mechanisms.For this purpose,the compressive strength and compressive resilient modulus of cement stabilized aggregates with different steel slag contents(CSMS)were initially investigated.Subsequently,the effects of steel slag and cement on dry shrinkage,temperature shrinkage,and total shrinkage were analyzed through a series of shrinkage test designs.Additionally,in combination with X-ray diffraction(XRD)and Scanning electron microscope(SEM),the characteristic peaks and microscopic images of cement,steel slag and cement-steel slag at different hydration ages were analyzed to identify the chemical substances causing the expansion volume of steel slag and reveal the compensation mechanism of CSMS.The results show that the introduction of 20%steel slag improved the mechanical properties of CSMS by 16.7%,reduced dry shrinkage by 21%,increased temperature shrinkage by 5.8%and reduced its total shrinkage by 19.2%.Compared with the hydration reaction of cement alone,the composite hydration reaction of steel slag with cement does not produce new hydrates.Furthermore,it is noteworthy that the volume expansion of the f-CaO hydration reaction in steel slag can compensate for the volume shrinkage of cement-stabilized macadam.This research can provide a solid theoretical basis for the application and promotion of steel slag in cement-stabilized macadam and reduce the possibility of shrinkage cracking.展开更多
The vacuum treatment for simultaneous desulphurization and dephosphorization of hot metal and molten steel with pre melted CaO based slag was carried out. For pre treatment of hot metal, both desulphurization and d...The vacuum treatment for simultaneous desulphurization and dephosphorization of hot metal and molten steel with pre melted CaO based slag was carried out. For pre treatment of hot metal, both desulphurization and dephosphorization are improved with the increase of CaO in slag, but deteriorated with the increase of CaF 2 in slag. The average desulphurization and dephosphorization rate is 68 83 % and 78 46 %, respectively. For molten steel, the substitution of BaO for CaO in slag has minor effect on simultaneous desulphurization and dephosphorization. The desulphurization and dephosphorization rate is higher than 90 % and 50 % respectively with the lowest final sulfur and phosphorus mass percent being 0 001 2 % and 0 010 %, respectively. The overall effect of simultaneous desulphurization and dephosphorization of molten steel is better than that of hot metal.展开更多
The vacuum treatment for simultaneous desulphurization and dephosphorization of hot metal and molten steel with pre-melted CaO-based slag was carried out.For pre-treatment of hot metal,both desulphurization and dephos...The vacuum treatment for simultaneous desulphurization and dephosphorization of hot metal and molten steel with pre-melted CaO-based slag was carried out.For pre-treatment of hot metal,both desulphurization and dephosphorization are improved with the increase of CaO in slag,but deteriorated with the increase of CaF2 in slag.The average desulphurization and dephosphorization rate is 68.83 % and 78.46 %,respectively.For molten steel,the substitution of BaO for CaO in slag has minor effect on simultaneous desulphurization and dephosphorization.The desulphurization and dephosphorization rate is higher than 90% and 50% respectively with the lowest final sulfur and phosphorus mass percent being 0.001 2% and 0.010%,respectively.The overall effect of simultaneous desulphurization and dephosphorization of molten steel is better than that of hot metal.展开更多
基金National Natural Science Foundation of China(Grant No.52078051)Fundamental Research Funds for the Central Universities(Grant No.310821163502)+1 种基金Technology Innovation Project of Shandong Department of Industry and Information(Grant No.Lugongxinji 2020-8)the Transportation Department of Shandong Province(Grant No.Lujiaokeji 2017-28).
文摘Steel slag is characterized by high strength,good wear resistance and micro-expansion.This study aims at exploring the potential of steel slag in cement stabilized aggregates,mainly including mechanical properties,shrinkage and compensation mechanisms.For this purpose,the compressive strength and compressive resilient modulus of cement stabilized aggregates with different steel slag contents(CSMS)were initially investigated.Subsequently,the effects of steel slag and cement on dry shrinkage,temperature shrinkage,and total shrinkage were analyzed through a series of shrinkage test designs.Additionally,in combination with X-ray diffraction(XRD)and Scanning electron microscope(SEM),the characteristic peaks and microscopic images of cement,steel slag and cement-steel slag at different hydration ages were analyzed to identify the chemical substances causing the expansion volume of steel slag and reveal the compensation mechanism of CSMS.The results show that the introduction of 20%steel slag improved the mechanical properties of CSMS by 16.7%,reduced dry shrinkage by 21%,increased temperature shrinkage by 5.8%and reduced its total shrinkage by 19.2%.Compared with the hydration reaction of cement alone,the composite hydration reaction of steel slag with cement does not produce new hydrates.Furthermore,it is noteworthy that the volume expansion of the f-CaO hydration reaction in steel slag can compensate for the volume shrinkage of cement-stabilized macadam.This research can provide a solid theoretical basis for the application and promotion of steel slag in cement-stabilized macadam and reduce the possibility of shrinkage cracking.
文摘The vacuum treatment for simultaneous desulphurization and dephosphorization of hot metal and molten steel with pre melted CaO based slag was carried out. For pre treatment of hot metal, both desulphurization and dephosphorization are improved with the increase of CaO in slag, but deteriorated with the increase of CaF 2 in slag. The average desulphurization and dephosphorization rate is 68 83 % and 78 46 %, respectively. For molten steel, the substitution of BaO for CaO in slag has minor effect on simultaneous desulphurization and dephosphorization. The desulphurization and dephosphorization rate is higher than 90 % and 50 % respectively with the lowest final sulfur and phosphorus mass percent being 0 001 2 % and 0 010 %, respectively. The overall effect of simultaneous desulphurization and dephosphorization of molten steel is better than that of hot metal.
基金Sponsored by Provincial Natural Science Foundation of Anhui of China
文摘The vacuum treatment for simultaneous desulphurization and dephosphorization of hot metal and molten steel with pre-melted CaO-based slag was carried out.For pre-treatment of hot metal,both desulphurization and dephosphorization are improved with the increase of CaO in slag,but deteriorated with the increase of CaF2 in slag.The average desulphurization and dephosphorization rate is 68.83 % and 78.46 %,respectively.For molten steel,the substitution of BaO for CaO in slag has minor effect on simultaneous desulphurization and dephosphorization.The desulphurization and dephosphorization rate is higher than 90% and 50% respectively with the lowest final sulfur and phosphorus mass percent being 0.001 2% and 0.010%,respectively.The overall effect of simultaneous desulphurization and dephosphorization of molten steel is better than that of hot metal.