The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized ...The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized VariationalMode Decomposition(VMD)jointWavelet Threshold Denoising(WTD)algorithm(BVW)is proposed.The BVW algorithm integrates VMD and WTD,both of which are optimized by BWOA.Specifically,this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited IntrinsicMode Functions(BLIMFs).Subsequently,these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold are selected as the effective mode functions,and the effective mode functions are denoised using WTD to filter out the residual low-and intermediate-frequency noise.Finally,the denoised microseismic signal is obtained through reconstruction.The ideal values of VMD parameters and WTD parameters are acquired by searching with BWOA to achieve the best VMD decomposition performance and solve the problem of relying on experience and requiring a large workload in the application of the WTD algorithm.The outcomes of simulated experiments indicate that this algorithm is capable of achieving good denoising performance under noise of different intensities,and the denoising performance is significantly better than the commonly used VMD and Empirical Mode Decomposition(EMD)algorithms.The BVW algorithm is more efficient in filtering noise,the waveform after denoising is smoother,the amplitude of the waveform is the closest to the original signal,and the signal-to-noise ratio(SNR)and the root mean square error after denoising are more satisfying.The case based on Fankou Lead-Zinc Mine shows that for microseismic signals with different intensities of noise monitored on-site,compared with VMD and EMD,the BVW algorithm ismore efficient in filtering noise,and the SNR after denoising is higher.展开更多
In order to solve the problems of local maximum modulus extraction and threshold selection in the edge detection of finite resolution digital images, a new wavelet transform based adaptive dual threshold edge detec...In order to solve the problems of local maximum modulus extraction and threshold selection in the edge detection of finite resolution digital images, a new wavelet transform based adaptive dual threshold edge detection algorithm is proposed. The local maximum modulus is extracted by linear interpolation in wavelet domain. With the analysis on histogram, the image is filtered with an adaptive dual threshold method, which effectively detects the contours of small structures as well as the boundaries of large objects. A wavelet domain's propagation function is used to further select weak edges. Experimental results have shown the self adaptivity of the threshold to images having the same kind of histogram, and the efficiency even in noise tampered images.展开更多
VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identic...VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identical neighbouring window size in all wavelet subbands. In this paper, an improved method is proposed, that determines a threshold as well as neighbouring window size for every subband using its lengths. Our experimental results illustrate that the proposed approach is better than the existing ones, i.e., NeighShrink, ModineighShrink and VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e. visual quality of the image.展开更多
This letter investigates the wavelet transform, as well as the principle and the method of the noise reduction based on wavelet transform, it chooses the threshold noise reduction, and discusses in detail the principl...This letter investigates the wavelet transform, as well as the principle and the method of the noise reduction based on wavelet transform, it chooses the threshold noise reduction, and discusses in detail the principles, features and design steps of the threshold method. Rigrsure, heursure, sqtwolog and minimization four kinds of threshold selection method are compared qualitatively, and quantitatively. The wavelet analysis toolbox of MATLAB helps to realize the computer simulation of the signal noise reduction. The graphics and calculated standard deviation of the various threshold noise reductions show that, when dealing with the actual pressure signal of the oil pipeline leakage, sqtwolog threshold selection method can effectively remove the noise. Aiming to the pressure signal of the oil pipeline leakage, the best choice is the wavelet threshold noise reduction with sqtwolog threshold. The leakage point is close to the actual position, with the relative error of less than 1%.展开更多
Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable thresh...Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable threshold function for speech enhancement was presented. Firstly, the function adopted narrow threshold areas, preserved the smaller signal speech, and improved the speech quality; secondly, based on the properties of the continuous differentiable and non-fixed deviation, each area function was attained gradually by using the method of mathematical derivation. It ensured that enhanced speech was continuous and smooth; it removed the auditory oscillation distortion; finally, combined with the Bark wavelet packets, it further improved human auditory perception. Experimental results show that the segmental SNR and PESQ (perceptual evaluation of speech quality) of the enhanced speech using this method increase effectively, compared with the existing speech enhancement algorithms based on wavelet threshold.展开更多
Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in...Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.展开更多
Shear probe works under a tough environment where the turbulence signals to be measured are very weak. The measured turbulence signals often contain a large amount of noise. Due to wide frequency band, noise signals c...Shear probe works under a tough environment where the turbulence signals to be measured are very weak. The measured turbulence signals often contain a large amount of noise. Due to wide frequency band, noise signals cannot be effectively removed by traditional methods based on Fourier transform. In this paper, a wavelet thresholding denoising method is proposed for turbulence signal processing in that wavelet analysis can be used for multi-resolution analysis and can extract local characteristics of the signals in both time and frequency domains. Turbulence signal denoising process is modeled based on the wavelet theory and characteristics of the turbulence signal. The threshold and decomposition level, as well as the procedure of the turbulence signal denoising, are determined using the wavelet thresholding method. The proposed wavelet thresholding method was validated by turbulence signal denoising of the Western Pacific Ocean trial data. The results show that the propsed method can reduce the noise in the measured signals by shear probes, and the frequency spectrums of the denoised signal correspond well to the Nasmyth spectrum.展开更多
As process technology development,model order reduction( MOR) has been regarded as a useful tool in analysis of on-chip interconnects. We propose a weighted self-adaptive threshold wavelet interpolation MOR method on ...As process technology development,model order reduction( MOR) has been regarded as a useful tool in analysis of on-chip interconnects. We propose a weighted self-adaptive threshold wavelet interpolation MOR method on account of Krylov subspace techniques. The interpolation points are selected by Haar wavelet using weighted self-adaptive threshold methods dynamically. Through the analyses of different types of circuits in very large scale integration( VLSI),the results show that the method proposed in this paper can be more accurate and efficient than Krylov subspace method of multi-shift expansion point using Haar wavelet that are no weighted self-adaptive threshold application in interest frequency range,and more accurate than Krylov subspace method of multi-shift expansion point based on the uniform interpolation point.展开更多
The chaotic oscillator has already been considered as a powerful method to detect weak signals, even weak signals accompanied with noises. However, many examples, analyses and simulations indicate that chaotic oscilla...The chaotic oscillator has already been considered as a powerful method to detect weak signals, even weak signals accompanied with noises. However, many examples, analyses and simulations indicate that chaotic oscillator detection system cannot guarantee the immunity to noises (even white noise). In fact the randomness of noises has a serious or even a destructive effect on the detection results in many cases. To solve this problem, we present a new detecting method based on wavelet threshold processing that can detect the chaotic weak signal accompanied with noise. All theoretical analyses and simulation experiments indicate that the new method reduces the noise interferences to detection significantly, thereby making the corresponding chaotic oscillator that detects the weak signals accompanied with noises more stable and reliable.展开更多
This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of nois...This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of noisy images, the original image can be reconstructed correctly. Different threshold selections and thresholding methods are discussed. A new robust local threshold scheme is proposed. Quantifying the performance of image denoising schemes by using the mean square error, the performance of the robust local threshold scheme is demonstrated and is compared with the universal threshold scheme. The experiment shows that image denoising using the robust local threshold performs better than that using the universal threshold.展开更多
In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural...In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural gradient algorithm based on bias removal technology to estimate the demixing matrix under noisy environment. Then the discrete wavelet transform technology is applied to the separated signals to further remove noise. In order to improve the separation effect, this paper analyzes the deficiency of hard threshold and soft threshold, and proposes a new wavelet threshold function based on the wavelet decomposition and reconfiguration. The simulations have verified that this method improves the signal noise ratio (SNR) of the separation results and the separation precision.展开更多
Partial discharge(PD)is an important reason for the insulation failure of the switchgear.In the process of PD detection,PD signal is often annihilated in strong noise.In order to improve the accuracy of PD detection i...Partial discharge(PD)is an important reason for the insulation failure of the switchgear.In the process of PD detection,PD signal is often annihilated in strong noise.In order to improve the accuracy of PD detection in power plant switchgear,a method based on continuous adaptive wavelet threshold switchgear PD signals denoising is proposed in this paper.By constructing a continuous adaptive threshold function and introducing adjustment parameters,the problems of over⁃processing of traditional hard threshold functions and incomplete denoising of soft threshold functions can be improved.The analysis results of simulated signals and measured signals show that the continuous adaptive wavelet threshold denoising method is significantly better than the traditional denoising method for the PD signal.The proposed method in this paper retains the characteristics of the original signal.Compared with the traditional denoising methods,after denoising the simulated signals,the signal⁃to⁃noise ratio(SNR)is increased by more than 30%,and the root⁃mean⁃square error(RMSE)is reduced by more than 30%.After denoising the real signal,the noise suppression ratio(NRR)is increased by more than 40%.The recognition accuracy rate of PD signal has also been improved to a certain extent,which proves that the method has a certain practicability.展开更多
Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a ...Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.展开更多
This paper proposes an image segmentation method based on the combination of the wavelet multi-scale edge detection and the entropy iterative threshold selection.Image for segmentation is divided into two parts by hig...This paper proposes an image segmentation method based on the combination of the wavelet multi-scale edge detection and the entropy iterative threshold selection.Image for segmentation is divided into two parts by high- and low-frequency.In the high-frequency part the wavelet multiscale was used for the edge detection,and the low-frequency part conducted on segmentation using the entropy iterative threshold selection method.Through the consideration of the image edge and region,a CT image of the thorax was chosen to test the proposed method for the segmentation of the lungs.Experimental results show that the method is efficient to segment the interesting region of an image compared with conventional methods.展开更多
This paper presents a new method of image threshold based upon wavelet transform, and introduces the concept of multiscale analysis, vision mechanism. The new method overcomes the uncertainty and inaccuracy of existin...This paper presents a new method of image threshold based upon wavelet transform, and introduces the concept of multiscale analysis, vision mechanism. The new method overcomes the uncertainty and inaccuracy of existing threshold selection methods based on image gray-level histogram.展开更多
In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and imple...In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches.展开更多
In the ultrasonic detection of defects in friction welded joints, it is difficult to exactly detect some weak bonding defects because of the noise pollution. This paper proposed an improved threshold function based on...In the ultrasonic detection of defects in friction welded joints, it is difficult to exactly detect some weak bonding defects because of the noise pollution. This paper proposed an improved threshold function based on the multi-resolution analysis wavelet threshold de-noising method which was put forward by Donoho and Johnstone, and applied this method in the de-noising of the defective signals. This threshold function overcomes the discontinuous shortcoming of the hard-threshold function and the disadvantage of soft threshold function which causes an invariable deviation between the estimated wavelet coeffwients and the decomposed wavelet coefficients. The improved threshold function is of simple expression and convenient for calculation. The actual test results of defect noise signal show that this improved method can get less mean square error ( MSE ) and higher signal-to-noise ratio of reconstructed signals than those calculated from hard threshold and soft threshold methods. The improved threshold function has excellent de-noising effect.展开更多
Most traditional ground roll separation methods utilize only the difference in geometric characteristics between the ground roll and the refl ection wave to separate them.When the geometric characteristics of data are...Most traditional ground roll separation methods utilize only the difference in geometric characteristics between the ground roll and the refl ection wave to separate them.When the geometric characteristics of data are complex,these methods often lead to damage of the reflection wave or incompletely suppress the ground roll.To solve this problem,we proposed a novel ground roll separation method via threshold filtering and constraint of seismic wavelet support in the curvelet domain;this method is called the TFWS method.First,curvelet threshold fi ltering(CTF)is performed by using the diff erence of the curvelet coeffi cient of the refl ection wave and the ground roll in the location,scale,and slope of their events to eliminate most of the ground roll.Second,the degree of the local damaged signal or the local residual noise is estimated as the local weighting coeffi cient.Under the constraints of seismic wavelet and local weighting coeffi cient,the L1 norm of the refl ection coeffi cient is minimized in the curvelet domain to recover the damaged refl ection wave and attenuate the residual noise.The local weighting coeffi cient in this paper is obtained by calculating the local correlation coeffi cient between the high-pass fi ltering result and the CFT result.We applied the TFWS method to simulate and fi eld data and compared its performance with that of frequency and wavenumber filtering and the CFT method.Results show that the TFWS method can attenuate not only linear ground roll,aliased ground roll,and nonlinear noise but also strong noise with a slope close to the refl ection events.展开更多
By utilizing the capability of high-speed computing,powerful real-time processing of TMS320F2812 DSP,wavelet thresholding denoising algorithm is realized based on Digital Signal Processors.Based on the multi-resolutio...By utilizing the capability of high-speed computing,powerful real-time processing of TMS320F2812 DSP,wavelet thresholding denoising algorithm is realized based on Digital Signal Processors.Based on the multi-resolution analysis of wavelet transformation,this paper proposes a new thresholding function,to some extent,to overcome the shortcomings of discontinuity in hard-thresholding function and bias in soft-thresholding function.The threshold value can be abtained adaptively according to the characteristics of wavelet coefficients of each layer by adopting adaptive threshold algorithm and then the noise is removed.The simulation results show that the improved thresholding function and the adaptive threshold algorithm have a good effect on denoising and meet the criteria of smoothness and similarity between the original signal and denoising signal.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.51874350)the National Natural Science Foundation of China(Grant No.52304127)+2 种基金the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2020zzts200)the Science Foundation of the Fuzhou University(Grant No.511229)Fuzhou University Testing Fund of Precious Apparatus(Grant No.2024T040).
文摘The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized VariationalMode Decomposition(VMD)jointWavelet Threshold Denoising(WTD)algorithm(BVW)is proposed.The BVW algorithm integrates VMD and WTD,both of which are optimized by BWOA.Specifically,this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited IntrinsicMode Functions(BLIMFs).Subsequently,these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold are selected as the effective mode functions,and the effective mode functions are denoised using WTD to filter out the residual low-and intermediate-frequency noise.Finally,the denoised microseismic signal is obtained through reconstruction.The ideal values of VMD parameters and WTD parameters are acquired by searching with BWOA to achieve the best VMD decomposition performance and solve the problem of relying on experience and requiring a large workload in the application of the WTD algorithm.The outcomes of simulated experiments indicate that this algorithm is capable of achieving good denoising performance under noise of different intensities,and the denoising performance is significantly better than the commonly used VMD and Empirical Mode Decomposition(EMD)algorithms.The BVW algorithm is more efficient in filtering noise,the waveform after denoising is smoother,the amplitude of the waveform is the closest to the original signal,and the signal-to-noise ratio(SNR)and the root mean square error after denoising are more satisfying.The case based on Fankou Lead-Zinc Mine shows that for microseismic signals with different intensities of noise monitored on-site,compared with VMD and EMD,the BVW algorithm ismore efficient in filtering noise,and the SNR after denoising is higher.
文摘In order to solve the problems of local maximum modulus extraction and threshold selection in the edge detection of finite resolution digital images, a new wavelet transform based adaptive dual threshold edge detection algorithm is proposed. The local maximum modulus is extracted by linear interpolation in wavelet domain. With the analysis on histogram, the image is filtered with an adaptive dual threshold method, which effectively detects the contours of small structures as well as the boundaries of large objects. A wavelet domain's propagation function is used to further select weak edges. Experimental results have shown the self adaptivity of the threshold to images having the same kind of histogram, and the efficiency even in noise tampered images.
文摘VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identical neighbouring window size in all wavelet subbands. In this paper, an improved method is proposed, that determines a threshold as well as neighbouring window size for every subband using its lengths. Our experimental results illustrate that the proposed approach is better than the existing ones, i.e., NeighShrink, ModineighShrink and VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e. visual quality of the image.
文摘This letter investigates the wavelet transform, as well as the principle and the method of the noise reduction based on wavelet transform, it chooses the threshold noise reduction, and discusses in detail the principles, features and design steps of the threshold method. Rigrsure, heursure, sqtwolog and minimization four kinds of threshold selection method are compared qualitatively, and quantitatively. The wavelet analysis toolbox of MATLAB helps to realize the computer simulation of the signal noise reduction. The graphics and calculated standard deviation of the various threshold noise reductions show that, when dealing with the actual pressure signal of the oil pipeline leakage, sqtwolog threshold selection method can effectively remove the noise. Aiming to the pressure signal of the oil pipeline leakage, the best choice is the wavelet threshold noise reduction with sqtwolog threshold. The leakage point is close to the actual position, with the relative error of less than 1%.
基金Project(61072087) supported by the National Natural Science Foundation of ChinaProject(2011-035) supported by Shanxi Province Scholarship Foundation, China+2 种基金Project(20120010) supported by Universities High-tech Foundation Projects, ChinaProject (2013021016-1) supported by the Youth Science and Technology Foundation of Shanxi Province, ChinaProjects(2013011016-1, 2012011014-1) supported by the Natural Science Foundation of Shanxi Province, China
文摘Enhanced speech based on the traditional wavelet threshold function had auditory oscillation distortion and the low signal-to-noise ratio (SNR). In order to solve these problems, a new continuous differentiable threshold function for speech enhancement was presented. Firstly, the function adopted narrow threshold areas, preserved the smaller signal speech, and improved the speech quality; secondly, based on the properties of the continuous differentiable and non-fixed deviation, each area function was attained gradually by using the method of mathematical derivation. It ensured that enhanced speech was continuous and smooth; it removed the auditory oscillation distortion; finally, combined with the Bark wavelet packets, it further improved human auditory perception. Experimental results show that the segmental SNR and PESQ (perceptual evaluation of speech quality) of the enhanced speech using this method increase effectively, compared with the existing speech enhancement algorithms based on wavelet threshold.
文摘Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.
基金Supported by National Natural Science Foundation of China (No. 50835006 and No. 51005161)National High-Tech R&D Program ("863"Program) of China (No. 2010AA09Z102)
文摘Shear probe works under a tough environment where the turbulence signals to be measured are very weak. The measured turbulence signals often contain a large amount of noise. Due to wide frequency band, noise signals cannot be effectively removed by traditional methods based on Fourier transform. In this paper, a wavelet thresholding denoising method is proposed for turbulence signal processing in that wavelet analysis can be used for multi-resolution analysis and can extract local characteristics of the signals in both time and frequency domains. Turbulence signal denoising process is modeled based on the wavelet theory and characteristics of the turbulence signal. The threshold and decomposition level, as well as the procedure of the turbulence signal denoising, are determined using the wavelet thresholding method. The proposed wavelet thresholding method was validated by turbulence signal denoising of the Western Pacific Ocean trial data. The results show that the propsed method can reduce the noise in the measured signals by shear probes, and the frequency spectrums of the denoised signal correspond well to the Nasmyth spectrum.
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.2016107)the China Postdoctoral Science Foundation(Grant No.2015M581447)
文摘As process technology development,model order reduction( MOR) has been regarded as a useful tool in analysis of on-chip interconnects. We propose a weighted self-adaptive threshold wavelet interpolation MOR method on account of Krylov subspace techniques. The interpolation points are selected by Haar wavelet using weighted self-adaptive threshold methods dynamically. Through the analyses of different types of circuits in very large scale integration( VLSI),the results show that the method proposed in this paper can be more accurate and efficient than Krylov subspace method of multi-shift expansion point using Haar wavelet that are no weighted self-adaptive threshold application in interest frequency range,and more accurate than Krylov subspace method of multi-shift expansion point based on the uniform interpolation point.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10731050)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRTO0742)
文摘The chaotic oscillator has already been considered as a powerful method to detect weak signals, even weak signals accompanied with noises. However, many examples, analyses and simulations indicate that chaotic oscillator detection system cannot guarantee the immunity to noises (even white noise). In fact the randomness of noises has a serious or even a destructive effect on the detection results in many cases. To solve this problem, we present a new detecting method based on wavelet threshold processing that can detect the chaotic weak signal accompanied with noise. All theoretical analyses and simulation experiments indicate that the new method reduces the noise interferences to detection significantly, thereby making the corresponding chaotic oscillator that detects the weak signals accompanied with noises more stable and reliable.
基金Supported by the National Natural Science Foundation of China(No.59775070)
文摘This paper suggests a scheme of image denoising based on two-dimensional discrete wavelet transform. The denoising algorithm is described with some operators. By thresholding the wavelet transform coefficients of noisy images, the original image can be reconstructed correctly. Different threshold selections and thresholding methods are discussed. A new robust local threshold scheme is proposed. Quantifying the performance of image denoising schemes by using the mean square error, the performance of the robust local threshold scheme is demonstrated and is compared with the universal threshold scheme. The experiment shows that image denoising using the robust local threshold performs better than that using the universal threshold.
基金supported by the Key Item of Science and Technology Program of Xiangtan City,Hunan Province,China under Grant No. ZJ20071008
文摘In general conditions, most blind source separation algorithms are established on noisy-free model and ignore the noise that affects the quality of separated sources. Firstly, this paper introduces an improved natural gradient algorithm based on bias removal technology to estimate the demixing matrix under noisy environment. Then the discrete wavelet transform technology is applied to the separated signals to further remove noise. In order to improve the separation effect, this paper analyzes the deficiency of hard threshold and soft threshold, and proposes a new wavelet threshold function based on the wavelet decomposition and reconfiguration. The simulations have verified that this method improves the signal noise ratio (SNR) of the separation results and the separation precision.
基金Sponsored by the Liaoning Provincial Department of Education Scientific Research Funding Project(Youth)(Grant No.JDL2020020)the Changzhou City Applied Basic Research Program(Grant No.CJ2020007).
文摘Partial discharge(PD)is an important reason for the insulation failure of the switchgear.In the process of PD detection,PD signal is often annihilated in strong noise.In order to improve the accuracy of PD detection in power plant switchgear,a method based on continuous adaptive wavelet threshold switchgear PD signals denoising is proposed in this paper.By constructing a continuous adaptive threshold function and introducing adjustment parameters,the problems of over⁃processing of traditional hard threshold functions and incomplete denoising of soft threshold functions can be improved.The analysis results of simulated signals and measured signals show that the continuous adaptive wavelet threshold denoising method is significantly better than the traditional denoising method for the PD signal.The proposed method in this paper retains the characteristics of the original signal.Compared with the traditional denoising methods,after denoising the simulated signals,the signal⁃to⁃noise ratio(SNR)is increased by more than 30%,and the root⁃mean⁃square error(RMSE)is reduced by more than 30%.After denoising the real signal,the noise suppression ratio(NRR)is increased by more than 40%.The recognition accuracy rate of PD signal has also been improved to a certain extent,which proves that the method has a certain practicability.
文摘Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.
基金Science Research Foundation of Yunnan Fundamental Research Foundation of Applicationgrant number:2009ZC049M+1 种基金Science Research Foundation for the Overseas Chinese Scholars,State Education Ministrygrant number:2010-1561
文摘This paper proposes an image segmentation method based on the combination of the wavelet multi-scale edge detection and the entropy iterative threshold selection.Image for segmentation is divided into two parts by high- and low-frequency.In the high-frequency part the wavelet multiscale was used for the edge detection,and the low-frequency part conducted on segmentation using the entropy iterative threshold selection method.Through the consideration of the image edge and region,a CT image of the thorax was chosen to test the proposed method for the segmentation of the lungs.Experimental results show that the method is efficient to segment the interesting region of an image compared with conventional methods.
文摘This paper presents a new method of image threshold based upon wavelet transform, and introduces the concept of multiscale analysis, vision mechanism. The new method overcomes the uncertainty and inaccuracy of existing threshold selection methods based on image gray-level histogram.
文摘In this paper a square wavelet thresholding method is proposed and evaluated as compared to the other classical wavelet thresholding methods (like soft and hard). The main advantage of this work is to design and implement a new wavelet thresholding method and evaluate it against other classical wavelet thresholding methods and hence search for the optimal wavelet mother function among the wide families with a suitable level of decomposition and followed by a novel thresholding method among the existing methods. This optimized method will be used to shrink the wavelet coefficients and yield an adequate compressed pressure signal prior to transmit it. While a comparison evaluation analysis is established, A new proposed procedure is used to compress a synthetic signal and obtain the optimal results through minimization the signal memory size and its transmission bandwidth. There are different performance indices to establish the comparison and evaluation process for signal compression;but the most well-known measuring scores are: NMSE, ESNR, and PDR. The obtained results showed the dominant of the square wavelet thresholding method against other methods using different measuring scores and hence the conclusion by the way for adopting this proposed novel wavelet thresholding method for 1D signal compression in future researches.
文摘In the ultrasonic detection of defects in friction welded joints, it is difficult to exactly detect some weak bonding defects because of the noise pollution. This paper proposed an improved threshold function based on the multi-resolution analysis wavelet threshold de-noising method which was put forward by Donoho and Johnstone, and applied this method in the de-noising of the defective signals. This threshold function overcomes the discontinuous shortcoming of the hard-threshold function and the disadvantage of soft threshold function which causes an invariable deviation between the estimated wavelet coeffwients and the decomposed wavelet coefficients. The improved threshold function is of simple expression and convenient for calculation. The actual test results of defect noise signal show that this improved method can get less mean square error ( MSE ) and higher signal-to-noise ratio of reconstructed signals than those calculated from hard threshold and soft threshold methods. The improved threshold function has excellent de-noising effect.
基金supported by Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(No.2017RCJJ034)the National Natural Science Foundation of China(No.41676039)the National Science and Technology Major Project(2017ZX05049002-005)。
文摘Most traditional ground roll separation methods utilize only the difference in geometric characteristics between the ground roll and the refl ection wave to separate them.When the geometric characteristics of data are complex,these methods often lead to damage of the reflection wave or incompletely suppress the ground roll.To solve this problem,we proposed a novel ground roll separation method via threshold filtering and constraint of seismic wavelet support in the curvelet domain;this method is called the TFWS method.First,curvelet threshold fi ltering(CTF)is performed by using the diff erence of the curvelet coeffi cient of the refl ection wave and the ground roll in the location,scale,and slope of their events to eliminate most of the ground roll.Second,the degree of the local damaged signal or the local residual noise is estimated as the local weighting coeffi cient.Under the constraints of seismic wavelet and local weighting coeffi cient,the L1 norm of the refl ection coeffi cient is minimized in the curvelet domain to recover the damaged refl ection wave and attenuate the residual noise.The local weighting coeffi cient in this paper is obtained by calculating the local correlation coeffi cient between the high-pass fi ltering result and the CFT result.We applied the TFWS method to simulate and fi eld data and compared its performance with that of frequency and wavenumber filtering and the CFT method.Results show that the TFWS method can attenuate not only linear ground roll,aliased ground roll,and nonlinear noise but also strong noise with a slope close to the refl ection events.
文摘By utilizing the capability of high-speed computing,powerful real-time processing of TMS320F2812 DSP,wavelet thresholding denoising algorithm is realized based on Digital Signal Processors.Based on the multi-resolution analysis of wavelet transformation,this paper proposes a new thresholding function,to some extent,to overcome the shortcomings of discontinuity in hard-thresholding function and bias in soft-thresholding function.The threshold value can be abtained adaptively according to the characteristics of wavelet coefficients of each layer by adopting adaptive threshold algorithm and then the noise is removed.The simulation results show that the improved thresholding function and the adaptive threshold algorithm have a good effect on denoising and meet the criteria of smoothness and similarity between the original signal and denoising signal.