The feasibility of semi-solid die casting of ADC12 aluminum alloy was studied. The effects of plunger speed, gate thickness, and solid fraction of the slurry on the defects were determined. The defects investigated ar...The feasibility of semi-solid die casting of ADC12 aluminum alloy was studied. The effects of plunger speed, gate thickness, and solid fraction of the slurry on the defects were determined. The defects investigated are gas and shrinkage porosity. In the experiments, semi-solid slurry was prepared by the gas-induced semi-solid (GISS) technique. Then, the slurry was transferred to the shot sleeve and injected into the die. The die and shot sleeve temperatures were kept at 180 ℃ and 250 ℃, respectively. The results show that the samples produced by the GISS die casting give little porosity, no blister and uniform microstructure. From all the results, it can be concluded that the GISS process is feasible to apply in the ADC12 aluminum die casting process. In addition, the GISS process can give improved properties such as decreased porosity and increased microstructure uniformity.展开更多
Near-liquidus cast ingot was reheated to semi-solid firstly, and then a bracket of motor was prepared by die casting the semi-solid ingot into mould. The microstructural characteristics of AZ91D alloy in these process...Near-liquidus cast ingot was reheated to semi-solid firstly, and then a bracket of motor was prepared by die casting the semi-solid ingot into mould. The microstructural characteristics of AZ91D alloy in these processes were investigated. In the process of near-liquidus casting, primary α-Mg grains tend to be rosette-like because of the increase of plentiful quasi-solid atom clusters in molten alloy with the decrease of pouring temperature. These rosette-like a-Mg grains in ingots fabricated by near-liquidus casting are fused off and refined into near-globular structure owing to the solute diffusion mechanism and the minimum surface energy mechanism during reheating. After semi-solid die-casting, a-Mg grains, located in biscuit, impact and connect with each other; α-Mg grains, located in inner gate, congregate together; while α-Mg grains, located in component, distribute uniformly and become into globularity or strip. Because the inner gate limits the flowing of semi-solid slurry, and the pressure acted on the semi-solid slurry decreases gradually along the filling direction of semi-solid slurry in Cavity, microstructural segregation of unmelted a-Mg grains appears along this direction. Shrinkage holes in casting are caused by two different reasons. For biscuit, the shrinkage holes are caused by the blocked access of feeding liquid to the shrinkage zone for the agglomerated unmelted α-Mg grains. For component, the shrinkage holes are caused by the lack of feeding of liquid alloy.展开更多
Combined with theoretical evaluation, an optimized strengthening process for the semi-solid die castings of A356 aluminum alloy was obtained by studying the mechanical properties of castings solution treated and aged ...Combined with theoretical evaluation, an optimized strengthening process for the semi-solid die castings of A356 aluminum alloy was obtained by studying the mechanical properties of castings solution treated and aged under different conditions in detail, then, the semi-solid die castings and liquid die castings were heat treated with the optimized process. The results show that the mechanical properties of semi-solid die castings of aluminum alloy are superior to those of the liquid die castings, especially the strengthening degree of heat treated semi-solid die castings is much greater than that of liquid die castings with the tensile strength more than 330 MPa and the elongation more than 10%, and this is mainly contributed to the non-dendritic and more compact microstructure of semi-solid die castings. The strengthening mechanism of heat treatment for the semi-solid die castings of A356 aluminum alloy is due to the dispersive precipitation of the second phase(Mg2Si) and formation of GP Zone.展开更多
In the present study,numerical simulation method was used to analyze the conditions,resulting in the formation of blisters during solution heat treatment.Blister formation is considered to occur as the height of blist...In the present study,numerical simulation method was used to analyze the conditions,resulting in the formation of blisters during solution heat treatment.Blister formation is considered to occur as the height of blister reaches 5μm.The effects of process parameters on the magnitude of the forming temperatures of blister(Tb)were discussed.Two kinds of Al-Si alloys were used to analyze the effect of mechanical properties of the alloys on blister forming conditions.Simulation results show that decreasing the initial pressure in gas hole,the long-short axial ratio of gas hole and the size of gas hole,as well as increasing the depth of gas hole and the strength of alloy are helpful to increase the critical temperature of forming blister.These conclusions are helpful for casters to understand the conditions controlling blister formation during solution heat treatment and take actions to avoid the blister defects.展开更多
In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automo...In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automobiles.Previously,the application of Mg alloys in automobiles,especially in automotive cockpit components,is quite extensive,while it has almost disappeared for a period of time due to its relatively high cost,causing a certain degree of information loss in the application technology of Mg alloy parts in automobiles.The rapid development of automotive technology has led to a higher requirement for the automotive components compared with those traditional one.Therefore,whatever the components themselves,or the Mg alloy materials and die casting process have to face an increasing challenge,needing to be upgraded.In addition,owing to its high integration characteristics,the application of Mg alloy die casting technology in large-sized and thin-walled automotive parts has inherent advantages and needs to be expanded urgently.Indeed,it necessitates exploring advance Mg alloys and new product structures and optimizing die casting processes.This article summarizes and analyzes the development status of thin-walled and large-sized die casting Mg alloy parts in passenger car cockpit and corresponding material selection methods,die casting processes as well as mold design techniques.Furthermore,this work will aid researchers in establishing a comprehensive understanding of the manufacture of thin-walled and large-sized die casting Mg alloy parts in automobile cockpit.It will also assist them in developing new Mg alloys with improved comprehensive performance and new processes to meet the high requirements for die casting automotive components.展开更多
In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollu...In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollution.At this point,aluminum syntactic foams(ASFs)are new-generation engineering composites and come into the upfront as a problem-solver.Owing to their features like low density,sufficient elongation,and perfect energy absorption ability,these advanced foams have been considerably seductive for many industrial sectors nowadays.In this study,an industrial-oriented automatic die casting technology was used for the first time to manufacture the combination of AA7075/porous expanded clay(PEC).Micro evaluations(optical and FESEM)reveal that there is a homogenous particle distribution in the foam samples,and inspections are compatible with the other ASF studies.Additionally,T6 aging heat treatment was operated on one half of the produced foams to explore the probable impact of aging on the compressive responses.Attained results show that PEC particles can be an alternative to expensive hollow spheres used in the previous works.Besides,a favorable relationship is ascertained between the aging treatment and mechanical properties such as compression strength and plateau strength.展开更多
The microstructure of semi-solid slurry of AZ91D alloy, which was produced by twin-screw stirring mixer under the different parameters, was investigated.Rheoforming by cold chamber die casting process was performed th...The microstructure of semi-solid slurry of AZ91D alloy, which was produced by twin-screw stirring mixer under the different parameters, was investigated.Rheoforming by cold chamber die casting process was performed thereafter. The results indicate that with decreasing of the barrel temperature of the mixer and the pouring temperature of molten Mg alloy, the solid fraction of semi-solid slurry increases and the size of non-dendritic grains becomes smaller. While the shear rate increases, the solid fraction of semi-solid slurry decreases. The tensile strength and elongation of metal rheoformed by die casting are higher by about 37% and 44% respectively than those produced by conventional liquid die casting.展开更多
The two production lines for the first phase of the semi-solid die-casting high-end parts project were put into production in this October, and can monthly produce more than 30 thousand die casting parts.
Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properti...Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively.展开更多
Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that m...Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.展开更多
In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile desig...In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile design of turbine blades. Casting shrinkages at different positions of the blade which was considered nonlinear thermo-mechanical casting deformations were calculated. Based on the displacement iterative compensation method proposed, the optimized wax pattern die profile can be established. For a A356 alloy blade, substantial reduction in dimensional and shape tolerances was achieved with the developed die shape optimization system. Numerical simulation result obtained by the proposed method shows a good agreement with the result measured experimentally. After four times iterations, compared with the CAD model of turbine blade, the total form error decreases to 0.001 978 mm from the orevious 0.515 815 mm.展开更多
The effects of vacuum assistance on the microstructure and mechanical properties of high-pressure die cast AZ91 D alloy at different slow shot speeds were evaluated. Plate-shaped castings of AZ91 D alloy were carried ...The effects of vacuum assistance on the microstructure and mechanical properties of high-pressure die cast AZ91 D alloy at different slow shot speeds were evaluated. Plate-shaped castings of AZ91 D alloy were carried out on a TOYO BD-350V5 cold chamber die casting machine incorporated with a self-improved TOYO vacuum system. It was found that the vacuum pressure in the die cavity at the beginning of mold filling increases with the increase of slow shot speed, following a cubic polynomial curve, resulting in a decline in the porosity-reduction ability of vacuum assistance with the increase of slow shot speed. The externally solidified crystal(ESC) contents in conventional and vacuum die castings behave similar against the slow shot speed. The tensile properties of vacuum die castings were strongly influenced by the ESC content at relative low slow shot speeds. With the increase of slow shot speed, the influence of the gas porosity level in vacuum die castings would get prominent.展开更多
High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a ...High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a AlSi10 MnMg alloy thin-wall longitudinal load-bearing beam produced by HPDC, different gating systems were designed and simulated by software Flow-3D to evaluate the entrapped air. Simulation results showed that when the beam is produced by the original designed gating system with a middle ingate, there exist obvious air entrapments in the critical area; the volume of air entrapment was reduced by replacing the middle ingate to an overflow well, and the filling of molten metal became more stable. When the middle ingate was removed for further improvement, the volume of air entrapment was decreased drastically. The parts with glossy surface and good microstructure have been successfully produced by using the final optimized gating system based on simulation results.展开更多
The temperature change of the die surface in practical aluminum alloy die casting process was analyzed,and a 2D model was formulated on the basis of a deep concave round cavity without sliding core to analyze thestres...The temperature change of the die surface in practical aluminum alloy die casting process was analyzed,and a 2D model was formulated on the basis of a deep concave round cavity without sliding core to analyze thestress distributions along the die surface in detail. Equipment was designed to test the thermal state of the die steelin different thermal loading conditions. The results of stress analysis showed that, the value of thermal stress (maximum1.5 GPa) caused in the die filling and die spraying stages was larger than the mechanical stress (maximum 85 MPa)caused in the die locking stage. The results of the thermal check experiment showed that there were three stages ofdie dissolving, and that the stress distribution shown by the samples' cracking routine was close to the die surfacestress analysis.展开更多
The gating system and the overflow system were designed according to the casting structure during high pressure die casting(HPDC) process. The simulation was carried out by ProCAST software to visualize the injection ...The gating system and the overflow system were designed according to the casting structure during high pressure die casting(HPDC) process. The simulation was carried out by ProCAST software to visualize the injection chamber pre-crystallization and the flow of molten metal. The main work is to research four die casting process parameters, i.e. injection temperature, low-pressure velocity, high-and low-pressure velocity’s switching position, and high-pressure velocity. Experimental results show that the higher injection temperature and lowpressure velocity can mitigate the pre-crystallization of the injection chamber. However, when the low-pressure velocity exceeds 0.2 m·s-1, the air entrapment in the chamber occurs. Besides, when the high-pressure velocity is greater than 2.5 m·s-1, the overflow channel at the final filling position is covered by the liquid metal too early. Finally, the injection temperature of 650 °C, the low-pressure velocity of 0.2 m·s-1, the high-and low-pressure velocity’s switching position of 320 mm and the high-pressure velocity of 2 m·s-1 are obtained as the optimal parameters by the software simulation, which has been verified by actual production.展开更多
Near-net shape rheocasting with the Council for Scientific and Industrial Research Rheo casting system(CSIR-RCS) and a high pressure die casting machine was successfully performed on Al-5Ti-1B grain refined aluminum a...Near-net shape rheocasting with the Council for Scientific and Industrial Research Rheo casting system(CSIR-RCS) and a high pressure die casting machine was successfully performed on Al-5Ti-1B grain refined aluminum alloy 7075.Grain refinement levels used were 0.03% Ti,0.13% Ti and 0.29% Ti(mass fraction).Tensile tests reveal that the ultimate tensile strengths,at all levels of grain refinement,are at least 97% of the specified minimum.Elongation at fracture increases with the increase of level of grain refinement although a maximum elongation is only 76% of the required minimum elongation in the case of 0.29% Ti.Incipient melting,during solution treatment,of the low melting point multinary eutectic causes porosity in the material and accounts for poor elongation results.0.03% Ti has a coarse eutectic structure forming larger pores while 0.29% Ti has a fine structure forming fine pores in the multinary eutectic.The 0.2% offset yield strengths of all the grain refinement levels are at least equal to or above the specified minimum and a decrease is observed with the increase of grain refinement level.There is a clear reduction in grain size from 0.03% Ti to 0.29% Ti in the as-cast condition.An underlying grain structure develops in the T6 condition material which has an inverse size to the as-cast structure;coarse grained as-cast material results in fine grained T6 condition material after solution heat treatment.The decrease in the offset yield strength as grain refinement increases correlates very strongly with the T6 grain sizes according to a Hall-Petch type relationship.展开更多
In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of castin...In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of casting thickness,process parameters and casting alloys on the IHTC are summarized and discussed.A thermal boundary condition model was developed based on the two correlations:(a)IHTC and casting solid fraction and(b)IHTC peak value and initial die surface temperature.The boundary model was then applied during the determination of the temperature field in HPDC and excellent agreement was found.展开更多
Heat transfer at the metal-die interface has a great influence on the solidification process and casting structure. As thin-wall components are extensively produced by high pressure die casting process(HPDC), the B390...Heat transfer at the metal-die interface has a great influence on the solidification process and casting structure. As thin-wall components are extensively produced by high pressure die casting process(HPDC), the B390 alloy finger-plate casting was cast against an H13 steel die on a cold-chamber HPDC machine. The interfacial heat transfer behavior at different positions of the die was carefully studied using an inverse approach based on the temperature measurements inside the die. Furthermore, the filling process and the solidification rate in different finger-plates were also given to explain the distribution of interfacial heat flux(q) and interfacial heat transfer coefficient(h). Measurement results at the side of sprue indicates that qmax and hmax could reach 9.2 MW·m^(-2) and 64.3 kW ·m^(-2)·K^(-1), respectively. The simulation of melt flow in the die reveals that the thinnest(T_1) finger plate could accelerate the melt flow from 50 m·s^(-1) to 110 m·s^(-1). Due to this high velocity, the interfacial heat flux at the end of T_1 could firstly reach a highest value 7.92 MW·m^(-2) among the ends of T_n(n=2,3,4,5). In addition, the q_(max) and h_(max) values of T_2, T_4 and T_5 finger-plates increase with the increasing thickness of the finger plate. Finally, at the rapid decreasing stage of interfacial heat transfer coefficient(h), the decreasing rate of h has an exponential relationship with the increasing rate of solid fraction(f).展开更多
Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite d...Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.展开更多
Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in castin...Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in casting mold filling processes.A mathematical model of the filling process was proposed specially considering the mass,momentum and heat transfer in the vicinity of free surfaces.Furthermore,a method for gas entrapment was established by tracking flow of entrapped gas.The model and method were applied to practical ADC1 high pressure die castings.The gas entrapment prediction was compared with the fraction and maximum size of porosities in the different casting parts.The comparison shows validity of the proposed model and method.The study indicates that final porosities in high pressure die castings are dependent on both gas entrapment during mold filling process and pressure transfer within solidification period.展开更多
基金funded by the Royal Golden Jubilee Ph.D. Program (Grant No.PHD/0173/2550)the Thai Research Fund (Contract number MRG5280215)Prince of Songkla University (Contract No.AGR530031M)
文摘The feasibility of semi-solid die casting of ADC12 aluminum alloy was studied. The effects of plunger speed, gate thickness, and solid fraction of the slurry on the defects were determined. The defects investigated are gas and shrinkage porosity. In the experiments, semi-solid slurry was prepared by the gas-induced semi-solid (GISS) technique. Then, the slurry was transferred to the shot sleeve and injected into the die. The die and shot sleeve temperatures were kept at 180 ℃ and 250 ℃, respectively. The results show that the samples produced by the GISS die casting give little porosity, no blister and uniform microstructure. From all the results, it can be concluded that the GISS process is feasible to apply in the ADC12 aluminum die casting process. In addition, the GISS process can give improved properties such as decreased porosity and increased microstructure uniformity.
基金Project(2008BB4177) supported by the Natural Science Foundation of Chongqing City, China
文摘Near-liquidus cast ingot was reheated to semi-solid firstly, and then a bracket of motor was prepared by die casting the semi-solid ingot into mould. The microstructural characteristics of AZ91D alloy in these processes were investigated. In the process of near-liquidus casting, primary α-Mg grains tend to be rosette-like because of the increase of plentiful quasi-solid atom clusters in molten alloy with the decrease of pouring temperature. These rosette-like a-Mg grains in ingots fabricated by near-liquidus casting are fused off and refined into near-globular structure owing to the solute diffusion mechanism and the minimum surface energy mechanism during reheating. After semi-solid die-casting, a-Mg grains, located in biscuit, impact and connect with each other; α-Mg grains, located in inner gate, congregate together; while α-Mg grains, located in component, distribute uniformly and become into globularity or strip. Because the inner gate limits the flowing of semi-solid slurry, and the pressure acted on the semi-solid slurry decreases gradually along the filling direction of semi-solid slurry in Cavity, microstructural segregation of unmelted a-Mg grains appears along this direction. Shrinkage holes in casting are caused by two different reasons. For biscuit, the shrinkage holes are caused by the blocked access of feeding liquid to the shrinkage zone for the agglomerated unmelted α-Mg grains. For component, the shrinkage holes are caused by the lack of feeding of liquid alloy.
文摘Combined with theoretical evaluation, an optimized strengthening process for the semi-solid die castings of A356 aluminum alloy was obtained by studying the mechanical properties of castings solution treated and aged under different conditions in detail, then, the semi-solid die castings and liquid die castings were heat treated with the optimized process. The results show that the mechanical properties of semi-solid die castings of aluminum alloy are superior to those of the liquid die castings, especially the strengthening degree of heat treated semi-solid die castings is much greater than that of liquid die castings with the tensile strength more than 330 MPa and the elongation more than 10%, and this is mainly contributed to the non-dendritic and more compact microstructure of semi-solid die castings. The strengthening mechanism of heat treatment for the semi-solid die castings of A356 aluminum alloy is due to the dispersive precipitation of the second phase(Mg2Si) and formation of GP Zone.
基金financially supported by the National Key Research and Development Program of China (No.2016YFB0301003)Shenzhen Science and Technology Innovation Commission under Projects (Nos.JCYJ20170307110223452,KQJSCX20170328155402991 and KQTD20170328154443162)。
文摘In the present study,numerical simulation method was used to analyze the conditions,resulting in the formation of blisters during solution heat treatment.Blister formation is considered to occur as the height of blister reaches 5μm.The effects of process parameters on the magnitude of the forming temperatures of blister(Tb)were discussed.Two kinds of Al-Si alloys were used to analyze the effect of mechanical properties of the alloys on blister forming conditions.Simulation results show that decreasing the initial pressure in gas hole,the long-short axial ratio of gas hole and the size of gas hole,as well as increasing the depth of gas hole and the strength of alloy are helpful to increase the critical temperature of forming blister.These conclusions are helpful for casters to understand the conditions controlling blister formation during solution heat treatment and take actions to avoid the blister defects.
基金supported by the foundation of“Cold area new energy service engineering laboratory battery pack comprehensive test system”from Jilin Provincial Development and Reform Commission(2020C021-6)the National Natural Science Foundation of China(NNSFC,No.52371109).
文摘In order to effectively reduce energy consumption and increase range mile,new energy vehicles represented by Tesla have greatly aroused the application of integrated magnesium(Mg)alloy die casting technology in automobiles.Previously,the application of Mg alloys in automobiles,especially in automotive cockpit components,is quite extensive,while it has almost disappeared for a period of time due to its relatively high cost,causing a certain degree of information loss in the application technology of Mg alloy parts in automobiles.The rapid development of automotive technology has led to a higher requirement for the automotive components compared with those traditional one.Therefore,whatever the components themselves,or the Mg alloy materials and die casting process have to face an increasing challenge,needing to be upgraded.In addition,owing to its high integration characteristics,the application of Mg alloy die casting technology in large-sized and thin-walled automotive parts has inherent advantages and needs to be expanded urgently.Indeed,it necessitates exploring advance Mg alloys and new product structures and optimizing die casting processes.This article summarizes and analyzes the development status of thin-walled and large-sized die casting Mg alloy parts in passenger car cockpit and corresponding material selection methods,die casting processes as well as mold design techniques.Furthermore,this work will aid researchers in establishing a comprehensive understanding of the manufacture of thin-walled and large-sized die casting Mg alloy parts in automobile cockpit.It will also assist them in developing new Mg alloys with improved comprehensive performance and new processes to meet the high requirements for die casting automotive components.
文摘In today’s manufacturing industries,hard competition between rival firms makes it compulsory for researchers to design lighter and cheaper machine components due to the megatrends of cost-effectiveness and anti-pollution.At this point,aluminum syntactic foams(ASFs)are new-generation engineering composites and come into the upfront as a problem-solver.Owing to their features like low density,sufficient elongation,and perfect energy absorption ability,these advanced foams have been considerably seductive for many industrial sectors nowadays.In this study,an industrial-oriented automatic die casting technology was used for the first time to manufacture the combination of AA7075/porous expanded clay(PEC).Micro evaluations(optical and FESEM)reveal that there is a homogenous particle distribution in the foam samples,and inspections are compatible with the other ASF studies.Additionally,T6 aging heat treatment was operated on one half of the produced foams to explore the probable impact of aging on the compressive responses.Attained results show that PEC particles can be an alternative to expensive hollow spheres used in the previous works.Besides,a favorable relationship is ascertained between the aging treatment and mechanical properties such as compression strength and plateau strength.
文摘The microstructure of semi-solid slurry of AZ91D alloy, which was produced by twin-screw stirring mixer under the different parameters, was investigated.Rheoforming by cold chamber die casting process was performed thereafter. The results indicate that with decreasing of the barrel temperature of the mixer and the pouring temperature of molten Mg alloy, the solid fraction of semi-solid slurry increases and the size of non-dendritic grains becomes smaller. While the shear rate increases, the solid fraction of semi-solid slurry decreases. The tensile strength and elongation of metal rheoformed by die casting are higher by about 37% and 44% respectively than those produced by conventional liquid die casting.
文摘The two production lines for the first phase of the semi-solid die-casting high-end parts project were put into production in this October, and can monthly produce more than 30 thousand die casting parts.
基金Project(51335009)supported by the National Natural Science Foundation of ChinaProject(2014JQ7273)supported by the Natural Science Foundation of Shaanxi Province of ChinaProject(CXY1514(1))supported by the Xi’an Science and Technology Plan Projects,China
文摘Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively.
基金Project(2015A030312003)supported by the Guangdong Natural Science Foundation for Research Team,ChinaProject(51374110)supported by the National Natural Science Foundation of China
文摘Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface.
基金Project (2008ZE53042) supported by National Aerospace Science Foundation of China
文摘In order to conform to dimensional tolerances, an efficient numerical method, displacement iterative compensation method, based on finite element methodology (FEM) was presented for the wax pattern die profile design of turbine blades. Casting shrinkages at different positions of the blade which was considered nonlinear thermo-mechanical casting deformations were calculated. Based on the displacement iterative compensation method proposed, the optimized wax pattern die profile can be established. For a A356 alloy blade, substantial reduction in dimensional and shape tolerances was achieved with the developed die shape optimization system. Numerical simulation result obtained by the proposed method shows a good agreement with the result measured experimentally. After four times iterations, compared with the CAD model of turbine blade, the total form error decreases to 0.001 978 mm from the orevious 0.515 815 mm.
基金Project(2012ZX04012011)supported by the National Science and Technology Major Project of the Ministry of Science and Technology of ChinaProject(2011BAE22B02)supported by the National Key Technologies R&D Program of ChinaProject(51275269)supported by the National Natural Science Foundation of China
文摘The effects of vacuum assistance on the microstructure and mechanical properties of high-pressure die cast AZ91 D alloy at different slow shot speeds were evaluated. Plate-shaped castings of AZ91 D alloy were carried out on a TOYO BD-350V5 cold chamber die casting machine incorporated with a self-improved TOYO vacuum system. It was found that the vacuum pressure in the die cavity at the beginning of mold filling increases with the increase of slow shot speed, following a cubic polynomial curve, resulting in a decline in the porosity-reduction ability of vacuum assistance with the increase of slow shot speed. The externally solidified crystal(ESC) contents in conventional and vacuum die castings behave similar against the slow shot speed. The tensile properties of vacuum die castings were strongly influenced by the ESC content at relative low slow shot speeds. With the increase of slow shot speed, the influence of the gas porosity level in vacuum die castings would get prominent.
基金supported by the Major Project of NSFC(51690161)the Student Innovation Program Major Project of Northeastern University(ZD1708)
文摘High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a AlSi10 MnMg alloy thin-wall longitudinal load-bearing beam produced by HPDC, different gating systems were designed and simulated by software Flow-3D to evaluate the entrapped air. Simulation results showed that when the beam is produced by the original designed gating system with a middle ingate, there exist obvious air entrapments in the critical area; the volume of air entrapment was reduced by replacing the middle ingate to an overflow well, and the filling of molten metal became more stable. When the middle ingate was removed for further improvement, the volume of air entrapment was decreased drastically. The parts with glossy surface and good microstructure have been successfully produced by using the final optimized gating system based on simulation results.
基金Shandong Postdoctoral Innovation Special Fund (No. 200703073)
文摘The temperature change of the die surface in practical aluminum alloy die casting process was analyzed,and a 2D model was formulated on the basis of a deep concave round cavity without sliding core to analyze thestress distributions along the die surface in detail. Equipment was designed to test the thermal state of the die steelin different thermal loading conditions. The results of stress analysis showed that, the value of thermal stress (maximum1.5 GPa) caused in the die filling and die spraying stages was larger than the mechanical stress (maximum 85 MPa)caused in the die locking stage. The results of the thermal check experiment showed that there were three stages ofdie dissolving, and that the stress distribution shown by the samples' cracking routine was close to the die surfacestress analysis.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0301003)
文摘The gating system and the overflow system were designed according to the casting structure during high pressure die casting(HPDC) process. The simulation was carried out by ProCAST software to visualize the injection chamber pre-crystallization and the flow of molten metal. The main work is to research four die casting process parameters, i.e. injection temperature, low-pressure velocity, high-and low-pressure velocity’s switching position, and high-pressure velocity. Experimental results show that the higher injection temperature and lowpressure velocity can mitigate the pre-crystallization of the injection chamber. However, when the low-pressure velocity exceeds 0.2 m·s-1, the air entrapment in the chamber occurs. Besides, when the high-pressure velocity is greater than 2.5 m·s-1, the overflow channel at the final filling position is covered by the liquid metal too early. Finally, the injection temperature of 650 °C, the low-pressure velocity of 0.2 m·s-1, the high-and low-pressure velocity’s switching position of 320 mm and the high-pressure velocity of 2 m·s-1 are obtained as the optimal parameters by the software simulation, which has been verified by actual production.
文摘Near-net shape rheocasting with the Council for Scientific and Industrial Research Rheo casting system(CSIR-RCS) and a high pressure die casting machine was successfully performed on Al-5Ti-1B grain refined aluminum alloy 7075.Grain refinement levels used were 0.03% Ti,0.13% Ti and 0.29% Ti(mass fraction).Tensile tests reveal that the ultimate tensile strengths,at all levels of grain refinement,are at least 97% of the specified minimum.Elongation at fracture increases with the increase of level of grain refinement although a maximum elongation is only 76% of the required minimum elongation in the case of 0.29% Ti.Incipient melting,during solution treatment,of the low melting point multinary eutectic causes porosity in the material and accounts for poor elongation results.0.03% Ti has a coarse eutectic structure forming larger pores while 0.29% Ti has a fine structure forming fine pores in the multinary eutectic.The 0.2% offset yield strengths of all the grain refinement levels are at least equal to or above the specified minimum and a decrease is observed with the increase of grain refinement level.There is a clear reduction in grain size from 0.03% Ti to 0.29% Ti in the as-cast condition.An underlying grain structure develops in the T6 condition material which has an inverse size to the as-cast structure;coarse grained as-cast material results in fine grained T6 condition material after solution heat treatment.The decrease in the offset yield strength as grain refinement increases correlates very strongly with the T6 grain sizes according to a Hall-Petch type relationship.
基金supported by the National Major Science and Technology Program of China(2012ZX04012011)the National Nature Science Foundation of China(51275269)
文摘In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of casting thickness,process parameters and casting alloys on the IHTC are summarized and discussed.A thermal boundary condition model was developed based on the two correlations:(a)IHTC and casting solid fraction and(b)IHTC peak value and initial die surface temperature.The boundary model was then applied during the determination of the temperature field in HPDC and excellent agreement was found.
基金financially supported by the class General Financial Grant from the China Postdoctoral Science Foundation(No.2015M580093)the National Nature Science Foundation of China(No.20151301587)the National Major Science and Technology Program of China(No.2012ZX04012011)
文摘Heat transfer at the metal-die interface has a great influence on the solidification process and casting structure. As thin-wall components are extensively produced by high pressure die casting process(HPDC), the B390 alloy finger-plate casting was cast against an H13 steel die on a cold-chamber HPDC machine. The interfacial heat transfer behavior at different positions of the die was carefully studied using an inverse approach based on the temperature measurements inside the die. Furthermore, the filling process and the solidification rate in different finger-plates were also given to explain the distribution of interfacial heat flux(q) and interfacial heat transfer coefficient(h). Measurement results at the side of sprue indicates that qmax and hmax could reach 9.2 MW·m^(-2) and 64.3 kW ·m^(-2)·K^(-1), respectively. The simulation of melt flow in the die reveals that the thinnest(T_1) finger plate could accelerate the melt flow from 50 m·s^(-1) to 110 m·s^(-1). Due to this high velocity, the interfacial heat flux at the end of T_1 could firstly reach a highest value 7.92 MW·m^(-2) among the ends of T_n(n=2,3,4,5). In addition, the q_(max) and h_(max) values of T_2, T_4 and T_5 finger-plates increase with the increasing thickness of the finger plate. Finally, at the rapid decreasing stage of interfacial heat transfer coefficient(h), the decreasing rate of h has an exponential relationship with the increasing rate of solid fraction(f).
文摘Recently, demand for the lightweight alloy in electric/electronic housings has been greatly increased. However, among the lightweight alloys, aluminum alloy thin-walled die casting is problematic because it is quite difficult to achieve sufficient fluidity and feedability to fill the thin cavity as the wall thickness becomes less than 1mm. Therefore, in this study, thin-walled die casting of aluminum (Al-Si-Cu alloy: ALDC 12) in size of notebook computer housing and thickness of 0.8 mm was investigated by solidification simulation (MAGMA soft) and actual casting experiment (Buhler Evolution B 53D). Three different types of gating design, finger, tangential and split type with 6 vertical runners, were simulated and the results showed that sound thin-walled die casting was possible with tangential and split type gating design because those gates allowed aluminum melt to flow into the thin cavity uniformly and split type gating system was preferable gating design comparing to tangential type gating system at the point of view of soundness of casting and distortion generated after solidification. Also, the solidification simulation agreed well with the actual die-casting and the casting showed no casting defects and distortion.
基金Project(50975093)supported by the National Natural Science Foundation of ChinaProject(08-0209)supported by New Century Excellent Talent in University,Ministry of Education,ChinaProject(2009ZM0283)supported by the Fundamental Research Funds for the Central Universities,China
文摘Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in casting mold filling processes.A mathematical model of the filling process was proposed specially considering the mass,momentum and heat transfer in the vicinity of free surfaces.Furthermore,a method for gas entrapment was established by tracking flow of entrapped gas.The model and method were applied to practical ADC1 high pressure die castings.The gas entrapment prediction was compared with the fraction and maximum size of porosities in the different casting parts.The comparison shows validity of the proposed model and method.The study indicates that final porosities in high pressure die castings are dependent on both gas entrapment during mold filling process and pressure transfer within solidification period.