期刊文献+
共找到623篇文章
< 1 2 32 >
每页显示 20 50 100
Study on the general layout of semi-submersible offshore drilling platforms based on process flow 被引量:2
1
作者 岳吉祥 綦耀光 +2 位作者 肖文生 杨磊 杨轶普 《Journal of Marine Science and Application》 2009年第2期117-122,共6页
The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency of their drilling operations. This paper provides a compound/integrated algorithm based on process f... The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency of their drilling operations. This paper provides a compound/integrated algorithm based on process flow that is aimed at improving efficiency, while giving attention to stability and safety at the same time. The paper describes the process flow of dual drilling centers and a hierarchical division of rigs based on the different modes of transportation of various drilling support systems. The general layout-centripetal overall arrangement spatially was determined based on drilling efficiency. We derived our modules according to drilling functionality; the modules became our basic layout units. We applied different layout algorithm to mark out the upper and lower decks. That is, the upper deck was designed based on the lowest transportation cost while the lower deck's calculations were based on the best-fit scope. Storage configurations in columns and pontoons were also considered for the layout design. Finally the center of gravity was taken into consideration and the general layout was adjusted accordingly, to result in an optimal center of gravity. The methodology of the general layout can provide a reference for implementation of domestic designs of semi-submersible rigs. 展开更多
关键词 semi-submersible drilling platform general layout drilling process flow layout optimization group technology
下载PDF
Research on optimization of valve open time of the launch barge's ballast tanks
2
作者 孙承猛 纪卓尚 《Journal of Marine Science and Application》 2009年第1期1-6,共6页
Launch barge is an effective tool for transporting ship segments from one place to another in shipyards. During shifting of segments onto a barge, the slideway on the barge's deck must be adjusted to maintain the sam... Launch barge is an effective tool for transporting ship segments from one place to another in shipyards. During shifting of segments onto a barge, the slideway on the barge's deck must be adjusted to maintain the same level as the wharf and also the barge must be kept level by adjusting the water in the ballast tanks. When to open the adjusting valves is an important factor influencing the barge's trim during the water-adjustment process. Because these adjustments are complex a mathematical model was formulated,after analyzing the characteristics of the process of moving the segments onto the barges deck, and considering the effects of this movement's speed and variations in tidal levels during the move. Then the model was solved by the penalty function method, the grid method, and improved simulated annealing, respectively. The best optimization model and its corresponding solution were then determined. Finally, it was proven that the model and the method adopted are correct and suitable, by calculating and analysing an example. 展开更多
关键词 launch barge STOWAGE penalty function method simulated annealing method grid method
下载PDF
极限海况下Barge平台漂浮式风电场动态响应 被引量:4
3
作者 刘青松 丁勤卫 +2 位作者 李春 邓允河 郝文星 《太阳能学报》 EI CAS CSCD 北大核心 2021年第7期398-407,共10页
为提高漂浮式风力机平台稳定性,以Barge平台漂浮式风力机为研究对象,建立共用系泊系统3×3阵列Barge平台的漂浮式风电场。以叶素动量理论为基础,利用水动力学软件AQWA并结合有限元方法,对Barge平台漂浮式风电场和单个Barge平台在极... 为提高漂浮式风力机平台稳定性,以Barge平台漂浮式风力机为研究对象,建立共用系泊系统3×3阵列Barge平台的漂浮式风电场。以叶素动量理论为基础,利用水动力学软件AQWA并结合有限元方法,对Barge平台漂浮式风电场和单个Barge平台在极限海况下考虑风波耦合作用的动态响应进行对比研究。结果表明,相较于单个Barge平台,风电场中各个平台的纵荡响应均小于单个Barge平台,位于两侧的各个平台产生不规则的横荡运动,但均较小;其次,Barge平台风电场的垂荡、纵摇及机舱加速度响应均优于单个Barge平台;同时,风电场中各平台表现出很好的首摇、横摇稳定性,波动幅度均未超过2°。研究结果验证了所建立的Barge平台漂浮式风电场的可行性,可为进一步开展新型漂浮式风电场研究提供理论依据。 展开更多
关键词 海上风力机 动态响应 自由度 barge 稳定性
下载PDF
Barge平台漂浮式风力机动态响应及稳定性控制研究 被引量:1
4
作者 王博 李春 +4 位作者 丁勤卫 张万福 张立 李蜀军 刘青松 《机械强度》 CAS CSCD 北大核心 2021年第6期1271-1279,共9页
将调谐质量阻尼器(TMD)配置于漂浮式风力机机舱或塔架可提高其整体稳定性,但加剧了塔基疲劳载荷。为此,在平台内部配置TMD进行减振控制,以ITI Barge平台为研究对象,建立漂浮式风力机动力学模型,研究塔顶前后和侧向位移随TMD质量、阻尼... 将调谐质量阻尼器(TMD)配置于漂浮式风力机机舱或塔架可提高其整体稳定性,但加剧了塔基疲劳载荷。为此,在平台内部配置TMD进行减振控制,以ITI Barge平台为研究对象,建立漂浮式风力机动力学模型,研究塔顶前后和侧向位移随TMD质量、阻尼及安装位置的变化规律,采用多岛遗传算法求得最优TMD参数,对比分析风波载荷作用下无TMD控制、机舱TMD控制及平台TMD控制对漂浮式风力机动态响应特性的影响。结果表明:塔顶前后和侧向位移随平台TMD参数变化较为显著,当位于相同位置处TMD质量和阻尼较大时,塔顶前后和侧向位移明显减小,平台TMD质量和阻尼不变时,塔顶前后和侧向位移随TMD位置升高逐渐减小。风波载荷作用下,TMD对漂浮式风力机动态响应控制效果较为明显,但各部位控制效果不同,塔顶侧向位移、平台横摇角及塔基横摇弯矩控制效果最为显著。此外,较之机舱TMD控制,平台TMD控制时漂浮式风力机稳定性更好。 展开更多
关键词 barge平台 调谐质量阻尼器 多岛遗传算法 动态响应 稳定性
下载PDF
Study on TMD Control on Stability Improvement of Barge-Supported Floating Offshore Wind Turbine Based on the Multi-Island Genetic Algorithm 被引量:5
5
作者 DING Qin-wei LI Chun +3 位作者 CHENG Shan-shan HAO Wen-xing HUANG Zhi-qian YU Wan 《China Ocean Engineering》 SCIE EI CSCD 2019年第3期309-321,共13页
A floating offshore wind turbine (FOWT) has a great potential in producing renewable energy as offshore wind resource is rich in deep sea area (water deeper than 60 m) where fixed foundations are cost-effective or dep... A floating offshore wind turbine (FOWT) has a great potential in producing renewable energy as offshore wind resource is rich in deep sea area (water deeper than 60 m) where fixed foundations are cost-effective or deployable. However, compared with a fixed-bottom installation, FOWT has to suffer more extreme loads due to its extra degrees of freedom. Therefore, the stability of an FOWT is a key challenge in exploiting offshore deep-water wind. Focusing on the stability of barge-type FOWT, this paper is to investigate the effect of passive structural control by equipping a tuned mass damper (TMD) on the nacelle. The turbulent wind with sharp fluctuations is established both in velocity and inflow direction based on standard Kaimal turbulence spectrum as suggested in the standard IEC61400-2. The irregular wave is generated according to the Pierson-Moskowitz spectrum. The dynamic structural characteristics of FOWT are calculated based on the fully coupled aero-hydro-servo-elastic solver FAST. Evidence has shown that the proposed method of the nacelle-based TMD is effective in controlling stability of an FOWT, as the sway and roll motions of barge and the side-side displacement of tower top decreased significantly. With the increase of mass, the side-side displacement of tower-top and the amplitude of roll motion of barge reveal a trend of increasing first and then decreasing. The stiffness and damping have little effect. Furthermore, the multi-island genetic optimization algorithm (MIGA) is employed to find globally optimum structural parameters (mass, stiffness and damping) of the TMD. The optimum structure parameters of TMD are achieved when the mass is 21393 kg, damping is 13635 N/(m/s) and stiffness is 6828 N/m. By adopting the optimized TMD, stability of roll motion of barge and side-side displacement of tower-top increase up to 53% and 50% respectively when compared with the normal TMD. The simulation results verify the validity and reliability of the proposed TMD control and the optimization methods. 展开更多
关键词 FOWT barge TMD MIGA wind wave STABILITY
下载PDF
Numerical investigation of influence of wave directionality on the water resonance at a narrow gap between two rectangular barges 被引量:3
6
作者 JIN Ruijia TENG Bin +2 位作者 NING Dezhi ZHAO Ming CHENG Liang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第6期104-111,共8页
A three-dimensional time-domain potential flow model with second-order nonlinearity was applied to simulate the wave resonance in a gap between two side-by-side rectangular barges. In the model, the velocity potential... A three-dimensional time-domain potential flow model with second-order nonlinearity was applied to simulate the wave resonance in a gap between two side-by-side rectangular barges. In the model, the velocity potential was decomposed into the incident potential and unknown scattered potential which was obtained by solving the boundary integral equation. The fourth-order predict-correct method was applied to enforce the free surface conditions in the time integration. The influence of the wave direction on the first and second-order gap surface elevations was investigated. The results reveal that the incident wave angle does not affect the resonant wave frequency and the maximum surface elevation at resonance always occurs at the middle location along the gap. However, the corresponding maximum wave surface elevation at resonance varies with the incident wave angle. The location of the maximum wave elevation shifts either upstream or downstream along the gap, depending on the relative magnitude of incident wave frequency to the resonant frequency. 展开更多
关键词 side-by-side barges resonant elevation second-order time-domain model wave directionality waterresonance
下载PDF
Comparison of Microbubble and Air Layer Injection with Porous Media for Drag Reduction on a Self-propelled Barge Ship Model 被引量:3
7
作者 Yanuar Kurniawan T.Waskito +2 位作者 Sigit Y.Pratama Bagus D.Candra Bilmantasya A.Rahmat 《Journal of Marine Science and Application》 CSCD 2018年第2期165-172,共8页
Ship resistance issues are related to fuel economy,speed,and cost efficiency.Air lubrication is a promising technique for lowering hull frictional resistance as it is supposed to modify the energy in the turbulent bou... Ship resistance issues are related to fuel economy,speed,and cost efficiency.Air lubrication is a promising technique for lowering hull frictional resistance as it is supposed to modify the energy in the turbulent boundary layer and thereby reduce hull friction.In this paper,the objective is to identify the optimum type of air lubrication using microbubble drag reduction(MBDR)and air layer drag reduction(ALDR)techniques to reduce the resistance of a 56-m Indonesian self-propelled barge(SPB).A model with the following dimensions was constructed:length L=2000 mm,breadth B=521.60 mm,and draft T=52.50 mm.The ship model was towed using standard towing tank experimental parameters.The speed was varied over the Froude number range 0.11–0.31.The air layer flow rate was varied at 80,85,and 90 standard liters per minute(SLPM)and the microbubble injection coefficient over the range 0.20–0.60.The results show that the ship model using the air layer had the highest drag reduction up to a maximum of 90%.Based on the characteristics of the SPB,which operates at low speed,the optimum air lubrication type to reduce resistance in this instance is ALDR. 展开更多
关键词 SELF-PROPELLED barge Ship resistance AIR lubrication MICROBUBBLE drag REDUCTION AIR layer drag REDUCTION
下载PDF
An Investigation on Low Frequency Fatigue Damage of Mooring Lines Applied in a Semi-Submersible Platform 被引量:5
8
作者 DU Junfeng WANG Shuqing +1 位作者 CHANG Anteng LI Huajun 《Journal of Ocean University of China》 SCIE CAS 2016年第3期438-446,共9页
Assessing the fatigue life of mooring systems is important for deep water structures. In this paper, a comprehensive fatigue analysis is conducted on the mooring lines applied in a semi-submersible platform with speci... Assessing the fatigue life of mooring systems is important for deep water structures. In this paper, a comprehensive fatigue analysis is conducted on the mooring lines applied in a semi-submersible platform with special focus on the low frequency(LF) fatigue damage. Several influential factors, including water depth, wave spectral parameters, and riser system, are considered. Numerical simulation of a semi-submersible platform with the mooring/riser system is executed under different conditions, and the fatigue damage of mooring lines is assessed by using the time domain analysis method as a benchmark. The effects of these factors on the mooring line tension and the fatigue damage are investigated and discussed in detail. Research results indicate that the LF fatigue damage only accounts for a very small portion of the total damage, although the LF components dominate the global motion response and the mooring line tension of the semi-submersible platform. However, it is demonstrated that the LF fatigue damage is clearly affected by the influential factors. The increase in water depth and spectral peak periods, and the existence of risers can weaken the contribution of the LF components to the mooring line fatigue damage, while the fatigue damage due to the LF components increases with the increase of significant wave height. 展开更多
关键词 semi-submersible mooring line fatigue damage low frequency wave frequency
下载PDF
Wave load computation in direct strength analysis of semi-submersible platform structures 被引量:7
9
作者 ZHANGHai-bin RENHui-long DAIYang-shan GEFei 《Journal of Marine Science and Application》 2004年第1期7-13,共7页
A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of ac... A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of accumulative chord length cubic parameter spline theory and analytic method was adopted for generating the wet surface mesh of platform. The hydrodynamic coefficients of platform were calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for platform with low forward speed. The equation of platform motions was established and solved in frequency domain, and the responses of wave-induced loads on the platform can be obtained. With the interpolation method being utilized, the pressure loads on shell elements for finite element analysis (FEA) were converted from those on the hydrodynamic computation mesh, which pave the basis for FEA with commercial software.A computer program based on this method has been developed, and a calculation example of semi-submersible platform was illustrated.Analysis results show that this method is a satisfying approach of wave loads computation for this kind of platform. 展开更多
关键词 semi-submersible platform wave loads mesh-generating direct strength analysis
下载PDF
Sensitivity Analysis of Air Gap Motion with Respect to Wind Load and Mooring System for Semi-Submersible Platform Design 被引量:5
10
作者 霍发力 聂焱 +2 位作者 杨德庆 董刚 崔锦 《China Ocean Engineering》 SCIE EI CSCD 2016年第4期535-548,共14页
A design of semi-submersible platform is mainly based on the extreme response analysis due to the forces experienced by the components during lifetime. The external loads can induce the extreme air gap response and po... A design of semi-submersible platform is mainly based on the extreme response analysis due to the forces experienced by the components during lifetime. The external loads can induce the extreme air gap response and potential deck impact to the semi-submersible platform. It is important to predict air gap response of platforms accurately in order to check the strength of local structures which withstand the wave slamming due to negative air gap. The wind load cannot be simulated easily by model test in towing tank whereas it can be simulated accurately in wind tunnel test. Furthermore, full scale simulation of the mooring system in model test is still a tuffwork especially the stiffness of the mooring system. Owing to the above mentioned problem, the model test results are not accurate enough for air gap evaluation. The aim of this paper is to present sensitivity analysis results of air gap motion with respect to the mooring system and wind load for the design of semi-submersible platform. Though the model test results are not suitable for the direct evaluation of air gap, they can be used as a good basis for tuning the radiation damping and viscous drag in numerical simulation. In the presented design example, a numerical model is tuned and validated by ANSYS AQWA based on the model test results with a simple 4 line symmetrical horizontal soft mooring system. According to the tuned numerical model, sensitivity analysis studies of air gap motion with respect to the mooring system and wind load are performed in time domain. Three mooring systems and five simulation cases about the presented platform are simulated based on the results of wind tunnel tests and sea-keeping tests. The sensitivity analysis results are valuable for the floating platform design. 展开更多
关键词 mooring system air gap semi-submersible platform radiation damping viscous drag
下载PDF
Dynamic Response of Offshore Wind Turbine on 3×3 Barge Array Floating Platform under Extreme Sea Conditions 被引量:5
11
作者 LIU Qing-song MIAO Wei-pao +3 位作者 YUE Min-nan LI Chun WANG Bo DING Qingwei 《China Ocean Engineering》 SCIE EI CSCD 2021年第2期186-200,共15页
Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and instal... Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and install wind turbines in order to harness wind energy and generate electricity.The conventional floating offshore wind turbine system is typically in the state of force imbalance due to the unique sway characteristics caused by the unfixed foundation and the high center of gravity of the platform.Therefore,a floating wind farm for 3×3 barge array platforms with shared mooring system is presented here to increase stability for floating platform.The NREL 5 MW wind turbine and ITI Energy barge reference model is taken as a basis for this work.Furthermore,the unsteady aerodynamic load solution model of the floating wind turbine is established considering the tip loss,hub loss and dynamic stall correction based on the blade element momentum(BEM)theory.The second development of AQWA is realized by FORTRAN programming language,and aerodynamic-hydrodynamic-Mooring coupled dynamics model is established to realize the algorithm solution of the model.Finally,the 6 degrees of freedom(DOF)dynamic response of single barge platform and barge array under extreme sea condition considering the coupling effect of wind and wave were observed and investigated in detail.The research results validate the feasibility of establishing barge array floating wind farm,and provide theoretical basis for further research on new floating wind farm. 展开更多
关键词 barge floating platform extreme sea conditions dynamic response STABILITY
下载PDF
Coupled Responses of Sewol,Twin Barges and Slings During Salvage 被引量:1
12
作者 YAO Zong WANG Wei-ping +1 位作者 JIANG Yan CHEN Shi-hai 《China Ocean Engineering》 SCIE EI CSCD 2018年第2期226-235,共10页
Korean Sewol is successfully lifted up with the strand jack system based on twin barges. During the salvage operation, two barges and Sewol encounter offshore environmental conditions of wave, current and wind. It is ... Korean Sewol is successfully lifted up with the strand jack system based on twin barges. During the salvage operation, two barges and Sewol encounter offshore environmental conditions of wave, current and wind. It is inevitable that the relative motions among the three bodies are coupled with the sling tensions, which may cause big dynamic loads for the lifting system. During the project engineering phase and the site operation, it is necessary to build up a simulation model that can precisely generate the coupled responses in order to define a suitable weather window and monitor risks for the salvage operation. A special method for calculating multibody coupled responses is introduced into Sewol salvage project. Each body’s hydrodynamic force and moment in multibody configuration is calculated in the way that one body is treated as freely moving in space, while other bodies are set as fixed globally.The hydrodynamic force and moment are then applied into a numerical simulation model with some calibration coefficients being inserted. These coefficients are calibrated with the model test results. The simulation model built up this way can predict coupled responses with the similar accuracy as the model test and full scale measurement,and particularly generate multibody shielding effects. Site measured responses and the responses only resulted from from the simulation keep project management simultaneously to judge risks of each salvage stage, which are important for success of Sewol salvage. 展开更多
关键词 SALVAGE lifting barge coupled response numerical simulation model test site measurement
下载PDF
Hydrodynamic Comparison of a Semi-submersible,TLP,and Spar:Numerical Study in the South China Sea Environment 被引量:5
13
作者 Binbin Li Kun Liu +1 位作者 Gongwei Yan Jinping Ou 《Journal of Marine Science and Application》 2011年第3期306-314,共9页
The South China Sea contains tremendous oil and gas resources in deepwater areas. However, one of the keys for deepwater exploration, the investigation of deepwater floating platforms, is very inadequate. In this pape... The South China Sea contains tremendous oil and gas resources in deepwater areas. However, one of the keys for deepwater exploration, the investigation of deepwater floating platforms, is very inadequate. In this paper, the authors studied and compared the hydrodynamics and global motion behaviors of typical deepwater platforms in the South China Sea environment. The hydrodynamic models of three main types of floating platforms, e.g. the Semi-submersible, tension leg platform (TLP), and Truss Spar, which could potentially be utilized in the South China Sea, were established by using the 3-D potential theory. Additionally, some important considerations which significantly influence the hydrodynamics were given. The RAOs in frequency domains as well as global motions in time domains under time-varying wind, random waves, and current in 100-y, 10-y, and 1-y return period environment conditions were predicted, compared, and analyzed. The results indicate that the heave and especially the pitch motion of the TLP are favorable. The heave response of the Truss Spar is perfect and comparable with that of the TLP when the peak period of random waves is low. However, the pitch motion of Truss Spar is extraordinarily lar^er than that of Semi-submersible and TLP. 展开更多
关键词 semi-submersible Spar tension leg platform (TLP) South China Sea HYDRODYNAMICS
下载PDF
Dynamic Performance of a Semi-Submersible Platform Subject to Wind and Waves 被引量:3
14
作者 ZHU Hang OU Jinping 《Journal of Ocean University of China》 SCIE CAS 2011年第2期127-134,共8页
By applying experimental and numerical simulations, the motion performance of a semi-submersible platform with mooring positoning system under combined actions of wind and waves is studied. The numerical simulation is... By applying experimental and numerical simulations, the motion performance of a semi-submersible platform with mooring positoning system under combined actions of wind and waves is studied. The numerical simulation is conducted by the method of nonlinear time domain coupled analysis, and the mooring forces are calculated by the piecewise extrapolating method. The scale in the model experiment is 1:100, and the mooring system of the model is designed with the method of equivalent water-depth truncation by comparing the numerical and the experimental results, the platform motion and mooring forces subject to wind and waves are investigated. The results indicate that the numerically simulated mooring forces agree well with the experimental results in static equivalent field, but show some difference in dynamic equivalent field; the numerically simulated platform motions coincide well with the experimental results. The maximum motion of the platform under operating conditions is 20.5 m. It means that the horizontal displacement is 2% less than the water depth, which satisfies the operating requirements. 展开更多
关键词 semi-submersible platform WIND WAVES numerical simulation experimental simulation
下载PDF
Strength Analysis on Brace Structure for Semi-Submersible in Consideration of Wave Slamming 被引量:2
15
作者 HUO Fa-li YAO Zhi +2 位作者 ZHANG Jian WANG Jun-wei DONG Bin 《China Ocean Engineering》 SCIE EI CSCD 2018年第5期536-545,共10页
Slamming on bracings of column stabilized units shall be considered as a possible limiting criterion under transit condition based on the requirements in DNV-OS-C103. However, the wave slamming loads under survival co... Slamming on bracings of column stabilized units shall be considered as a possible limiting criterion under transit condition based on the requirements in DNV-OS-C103. However, the wave slamming loads under survival condition were ignored for the strength analysis of the brace structures in many semi-submersible projects. In this paper, a method of strength analysis of brace structure is proposed based on the reconstruction and extrapolation of numerical model. The full-scale mooring system, the wind, wave and current loads can be considered simultaneously. Firstly,the model tests of the semi-submersible platform in wind tunnel and wave tanker have been carried out. Secondly,the numerical models of the platform are reconstructed and extrapolated based on the results of model tests. Then, a nonlinear numerical analysis has been conducted to study the wave slamming load on brace in semi-submersible platform through the reconstructed and extrapolated numerical model. For the randomness of wave load, ten subcases under each condition have been carried out. The value of the 90% Gumble distribution values of the ten subcases are used. Finally, the strength on brace structure has been analyzed considering the wave slamming. The wave slamming loads have been compared between the survival condition and transit condition with the method. The results indicate that wave slamming under survival condition is more critical than that under transit condition.Meanwhile, the wave slamming is significant to the structural strength of the brace. It should be overall considered in the strength analysis of the brace structure. 展开更多
关键词 semi-submersible platform wave slamming brace structure structural strength
下载PDF
Study on Global Performances and Mooring-Induced Damping of A Semi-Submersible 被引量:2
16
作者 XIONG Ling-zhi YANG Jian-min +2 位作者 LV Hai-ning ZHAO Wen-hua KOU Yu-feng 《China Ocean Engineering》 SCIE EI CSCD 2016年第5期671-686,共16页
The harsh environmental conditions bring strong nonlinearities to the hydrodynamic performances of the offshore floating platforms, which challenge the reliable prediction of the platform coupled with the mooring syst... The harsh environmental conditions bring strong nonlinearities to the hydrodynamic performances of the offshore floating platforms, which challenge the reliable prediction of the platform coupled with the mooring system. The present study investigates a typical semi-submersible under both the operational and the survival conditions through numerical and experimental methods. The motion responses, the mooring line tensions, and the wave loads on the longitudinal mid-section are investigated by both the fully non-linearly coupled numerical simulation and the physical experiment. Particularly, in the physical model test, the wave loads distributed on the semi-submersible's mid-section were measured by dividing the model into two parts, namely the port and the starboard parts, which were rigidly connected by three six-component force transducers. It is concluded that both the numerical and physical model can have good prediction of the semi-submersible's global responses. In addition, an improved numerical approach is proposed for the estimation of the mooting-induced damping, and is validated by both the experimental and the published results. The characteristics of the mooring-induced damping are further summarized in various sea states, including the operational and the survival ~nvironments. In order to obtain the better prediction of the system response in deep water, the mooring-induced damping of the truncated mooring lines applied in the physical experiment are compensated by comparing with those in full length. Furthermore, the upstream taut and the downstream slack mooring lines are classified and investigated to obtain the different mooring line damping performances in the comparative study. 展开更多
关键词 semi-submersible physical model tests mooring-induced damping numerical simulation
下载PDF
First Rocketsonde Launched from an Unmanned Semi-submersible Vehicle 被引量:2
17
作者 Hongbin CHEN Jun LI +4 位作者 Yuejian XUAN Xiaosong HUANG Weifeng ZHU Keping ZHU Wenzheng SHAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第4期339-345,共7页
The unmanned semi-submersible vehicle(USSV) developed by the unmanned surface vehicle team of the Institute of Atmospheric Physics is an unmanned, rugged, and high-endurance autonomous navigation vessel designed for t... The unmanned semi-submersible vehicle(USSV) developed by the unmanned surface vehicle team of the Institute of Atmospheric Physics is an unmanned, rugged, and high-endurance autonomous navigation vessel designed for the collection of long-term, continuous and real-time marine meteorological measurements, including atmospheric sounding in the lower troposphere. A series of river and sea trials were conducted from May 2016 to November 2017, and the first rocketsonde was launched from the USSV. Real-time meteorological parameters in the marine atmospheric boundary layer(MABL) were obtained, including sea surface temperature, and vertical profiles of the pressure, temperature, relative humidity, wind speed,and wind direction. These data are extremely useful and important for research on air–sea interactions, sea surface heat and latent heat flux estimations, MABL modeling, and marine satellite product validation. 展开更多
关键词 unmanned semi-submersible VEHICLE rocketsonde MARINE METEOROLOGICAL observation MARINE ATMOSPHERIC BOUNDARY layer
下载PDF
Dynamics of Large-Truncated Mooring Systems Coupled with A Catenary Moored Semi-Submersible 被引量:2
18
作者 徐胜 嵇春艳 《China Ocean Engineering》 SCIE EI CSCD 2014年第2期149-162,共14页
With the floating structures pushing their activities to the ultra-deep water, model tests have presented a challenge due to the limitation of the existing wave basins. Therefore, the concept of truncated mooring syst... With the floating structures pushing their activities to the ultra-deep water, model tests have presented a challenge due to the limitation of the existing wave basins. Therefore, the concept of truncated mooring system is implemented to replace the full depth mooring system in the model tests, which aims to have the same dynamic responses as the full depth system. The truncated mooring system plays such a significant role that extra attention should be paid to the mooring systems with large truncation factor. Three different types of large truncation factor mooring system are being employed in the simulations, including the homogenously truncated mooring system, non-homogenously truncated mooring system and simplified truncated mooring system. A catenary moored semi-submersible operating at 1000 m water depth is presented. In addition, truncated mooring systems are proposed at the truncated water depth of 200 m. In order to explore the applicability of these truncated mooring systems, numerical simulations of the platform’s surge free decay interacting with three different styles of truncated mooring systems are studied in calm water. Furthermore, the mooring-induced damping of the truncated mooring systems is simulated in the regular wave. Finally, the platform motion responses and mooring line dynamics are simulated in irregular wave. All these simulations are implemented by employing full time domain coupled dynamic analysis, and the results are compared with those of the full depth simulations in the same cases. The results show that the mooring-induced damping plays a significant role in platform motion responses, and all truncated mooring systems are suitable for model tests with appropriate truncated mooring line diameters. However, a large diameter is needed for simplified truncated mooring lines. The suggestions are given to the selection of truncated mooring system for different situations as well as to the truncated mooring design criteria. 展开更多
关键词 CATENARY semi-submersible truncated mooring system large truncated full coupled dynamic analysis mooring-induced damping
下载PDF
Investigation of the Hydrodynamic Performance of a Novel Semi-Submersible Platform with Multiple Small Columns 被引量:1
19
作者 SONG Xiancang WANG Shuqing +1 位作者 LI Huajun LI Tao 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第1期108-122,共15页
This paper presents a novel semi-submersible(SEMI) platform concept, called the multiple small columns(MSC) SEMI that improves upon the hydrodynamic performance of the conventional SEMI. Unlike the conventional SEMI, ... This paper presents a novel semi-submersible(SEMI) platform concept, called the multiple small columns(MSC) SEMI that improves upon the hydrodynamic performance of the conventional SEMI. Unlike the conventional SEMI, the proposed MSC SEMI utilizes multiple small circular columns to support the deck and a large pontoon that increases the structural displacement. The novelty of the MSC SEMI is its reduction of the hydrodynamic load on the structure and suppression of its motion response, particularly in the heave direction. The MSC SEMI has the advantages of increasing the added mass, radiation damping, and natural period of the structure. A comprehensive investigation of the hydrodynamic performance of the novel MSC SEMI is conducted in both the time and frequency domains with a special focus on the resulting hydrodynamic load and motion response. Numerical simulation results demonstrate that the MSC SEMI concept can reduce the hydrodynamic load and motion response and improve the hydrodynamic performance of SEMIs as expected. 展开更多
关键词 semi-submersible PLATFORM MULTIPLE SMALL COLUMNS HYDRODYNAMIC performance coupled dynamic analysis
下载PDF
Calculation of hydrodynamics for semi-submersibles based on NURBS 被引量:1
20
作者 任慧龙 刘文玺 《Journal of Marine Science and Application》 2008年第2期91-97,共7页
Accurate hydrodynamic calculations for semi-submersibles are critical to support modern rapid exploration and extraction of ocean resources. In order to speed hydrodynamic calculations, lines modeling structures were ... Accurate hydrodynamic calculations for semi-submersibles are critical to support modern rapid exploration and extraction of ocean resources. In order to speed hydrodynamic calculations, lines modeling structures were separated into structural parts and then fitted to Non-uniform Rational B-spline (NURBS). In this way, the bow and stern section lines were generated. Modeling of the intersections of the parts was then done with the universal modeling tool MSC.Patran. Mesh was gererated on the model in order to obtain points of intersection on the joints, and then these points were fitted to NURBS. Next, the patch representation method was adopted to generate the meshes of wetted surfaces and interior free surfaces. Velocity potentials on the surfaces were calculated separately, on basis of which the irregular frequency effect was dealt with in the calculation of hydrodynamic coefficients. Finally, the motion response of the semi-submersible was calculated, and in order to improve calculations of vertical motion, a damping term was affixed in the vertical direction. The results show that the above methods can generate fine mesh accurately representing the wetted surface of a semi-submersible and thus improve the accuracy of hydrodynamic calculations. 展开更多
关键词 splines surface fitting semi-submersible irregular frequency
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部