We discuss estimates for the rate of convergence of the method of successive subspace corrections in terms of condition number estimate for the method of parallel subspace corrections.We provide upper bounds and in a ...We discuss estimates for the rate of convergence of the method of successive subspace corrections in terms of condition number estimate for the method of parallel subspace corrections.We provide upper bounds and in a special case,a lower bound for preconditioners defined via the method of successive subspace corrections.展开更多
Based on the geometric theories of vector space, a Cross-Identity theorem is proved for the relationship between the power kernels and power images of linear map on its cyclic subspace. By this result, a new approach ...Based on the geometric theories of vector space, a Cross-Identity theorem is proved for the relationship between the power kernels and power images of linear map on its cyclic subspace. By this result, a new approach of proof is found for the fact that a square matrix with only one eigenvalue and one-dimensional eigenspace is similar to a Jordan block matrix.展开更多
The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and st...The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.展开更多
High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this prob...High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this problem.The basic idea was to search the line manifold clusters hidden in datasets,and then fuse some of the line manifold clusters to construct higher dimensional manifold clusters.The orthogonal distance and the tangent distance were considered together as the linear manifold distance metrics. Spatial neighbor information was fully utilized to construct the original line manifold and optimize line manifolds during the line manifold cluster searching procedure.The results obtained from experiments over real and synthetic data sets demonstrate the superiority of the proposed method over some competing clustering methods in terms of accuracy and computation time.The proposed method is able to obtain high clustering accuracy for various data sets with different sizes,manifold dimensions and noise ratios,which confirms the anti-noise capability and high clustering accuracy of the proposed method for high dimensional data.展开更多
This paper gives the truncated version of the Minpert method:the incomplete minimum perturbation algorithm(IMinpert).It is based on an incomplete orthogonal- ization of the Krylov vectors in question,and gives a quasi...This paper gives the truncated version of the Minpert method:the incomplete minimum perturbation algorithm(IMinpert).It is based on an incomplete orthogonal- ization of the Krylov vectors in question,and gives a quasi-minimum backward error solution over the Krylov subspace.In order to make the practical implementation of IMinpert easy and convenient,we give another approximate version of the IMinpert method:A-IMinpert.Theoretical properties of the latter algorithm are discussed.Nu- merical experiments are reported to show the proposed method is effective in practice and is competitive with the Minpert algorithm.展开更多
The Incomplete Orthogonalization Method (IOM(q)), a truncated version of the Full Orthogonalization Method (FOM) proposed by Saad, has been used for solving large unsymme- tric linear systmes. However, the IOM(q) exhi...The Incomplete Orthogonalization Method (IOM(q)), a truncated version of the Full Orthogonalization Method (FOM) proposed by Saad, has been used for solving large unsymme- tric linear systmes. However, the IOM(q) exhibites irregular convergence behavior with wild oscillation in the residual norms though it tends to decrease in a very slow manner, which is owing to the lack of minimization property over the Krylov subspace. QMR method proposed by Freund, Gutknecht and Nachtigal, owing to its ability to avoid breakdowns and smooth convergence behavior, is a robust iterative solver for general nonsingular unsymmetric linear systems. In this paper, we propose a novel quasi-minimal residual (QMR) variant of the Incomplete Orthogona- lization Method (IOM(q)). Numerical experiments show that it has smooth convergence behavior and is more effective, especially when using its restarted version.展开更多
The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG meth...The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG method is an effective method for symmetric coefficient matrices A (i). In this paper, the FOM method is employed to solve multiple linear sy stems when coefficient matrices are non-symmetric matrices. One of the systems is selected as the seed system which generates a Krylov subspace, then the resi duals of other systems are projected onto the generated Krylov subspace to get t he approximate solutions for the unsolved ones. The whole process is repeated u ntil all the systems are solved.展开更多
A double optimal solution of an n-dimensional system of linear equations Ax=b has been derived in an affine m-dimensional Krylov subspace with m <<n.We further develop a double optimal iterative algorithm(DOIA),...A double optimal solution of an n-dimensional system of linear equations Ax=b has been derived in an affine m-dimensional Krylov subspace with m <<n.We further develop a double optimal iterative algorithm(DOIA),with the descent direction z being solved from the residual equation Az=r0 by using its double optimal solution,to solve ill-posed linear problem under large noise.The DOIA is proven to be absolutely convergent step-by-step with the square residual error ||r||^2=||b-Ax||^2 being reduced by a positive quantity ||Azk||^2 at each iteration step,which is found to be better than those algorithms based on the minimization of the square residual error in an m-dimensional Krylov subspace.In order to tackle the ill-posed linear problem under a large noise,we also propose a novel double optimal regularization algorithm(DORA)to solve it,which is an improvement of the Tikhonov regularization method.Some numerical tests reveal the high performance of DOIA and DORA against large noise.These methods are of use in the ill-posed problems of structural health-monitoring.展开更多
A new algorithm for unsupervised hyperspectral data unmixing is investigated, which includes a modified minimum noise fraction (MNF) transformation and independent component analysis (ICA). The modified MNF transf...A new algorithm for unsupervised hyperspectral data unmixing is investigated, which includes a modified minimum noise fraction (MNF) transformation and independent component analysis (ICA). The modified MNF transformation is used to reduce noise and remove correlation between neighboring bands. Then the ICA is applied to unmix hyperspectral images, and independent endmembers are obtained from unmixed images by using post-processing which includes image segmentation based on statistical histograms and morphological operations. The experimental results demonstrate that this algorithm can identify endmembers resident in mixed pixels. Meanwhile, the results show the high computational efficiency of the modified MNF transformation. The time consumed by the modified method is almost one fifth of the traditional MNF transformation.展开更多
In this paper, we provide new preconditioner for saddle point linear systems with (1,1) blocks that have a high nullity. The preconditioner is block triangular diagonal with two variable relaxation paremeters and it i...In this paper, we provide new preconditioner for saddle point linear systems with (1,1) blocks that have a high nullity. The preconditioner is block triangular diagonal with two variable relaxation paremeters and it is extension of results in [1] and [2]. Theoretical analysis shows that all eigenvalues of preconditioned matrix is strongly clustered. Finally, numerical tests confirm our analysis.展开更多
In this paper, we propose DQMR algorithm for the Drazin-inverse solution of consistent or inconsistent linear systems of the form Ax=b where is a singular and in general non-hermitian matrix that has an arb...In this paper, we propose DQMR algorithm for the Drazin-inverse solution of consistent or inconsistent linear systems of the form Ax=b where is a singular and in general non-hermitian matrix that has an arbitrary index. DQMR algorithm for singular systems is analogous to QMR algorithm for non-singular systems. We compare this algorithm with DGMRES by numerical experiments.展开更多
The convergence problem of many Krylov subspace methods, e.g., FOM, GCR, GMRES and QMR, for solving large unsymmetric (non-Hermitian) linear systems is considered in a unified way when the coefficient matrix A is defe...The convergence problem of many Krylov subspace methods, e.g., FOM, GCR, GMRES and QMR, for solving large unsymmetric (non-Hermitian) linear systems is considered in a unified way when the coefficient matrix A is defective and its spectrum lies in the open right (left) half plane. Related theoretical error bounds are established and some intrinsic relationships between the convergence speed and the spectrum of A are exposed. It is shown that these methods are likely to converge slowly once one of the three cases occurs: A is defective, the distribution of its spectrum is not favorable, or the Jordan basis of A is ill conditioned. In the proof, some properties on the higher order derivatives of Chebyshev polynomials in an ellipse in the complex plane are derived, one of which corrects a result that has been used extensively in the literature.展开更多
In this paper, the similarity-invariant subspaces of B(H), which is tile Banach algebra of all bounded linear operators on a separable infinite-dimensional Hilbert space H, are completely characterized and the represe...In this paper, the similarity-invariant subspaces of B(H), which is tile Banach algebra of all bounded linear operators on a separable infinite-dimensional Hilbert space H, are completely characterized and the representations of bounded linear maps on B(H) which preserve similarity in both directions are given.展开更多
In this paper we reconsider the range-restricted GMRES (RRGMRES) method for solving nonsymmetric linear systems. We first review an important result for the usual GMRES method. Then we give an example to show that the...In this paper we reconsider the range-restricted GMRES (RRGMRES) method for solving nonsymmetric linear systems. We first review an important result for the usual GMRES method. Then we give an example to show that the range-restricted GMRES method does not admit such a result. Finally, we give a modified result for the range-restricted GMRES method. We point out that the modified version can be used to show that the range-restricted GMRES method is also a regularization method for solving linear ill-posed problems.展开更多
文摘We discuss estimates for the rate of convergence of the method of successive subspace corrections in terms of condition number estimate for the method of parallel subspace corrections.We provide upper bounds and in a special case,a lower bound for preconditioners defined via the method of successive subspace corrections.
文摘Based on the geometric theories of vector space, a Cross-Identity theorem is proved for the relationship between the power kernels and power images of linear map on its cyclic subspace. By this result, a new approach of proof is found for the fact that a square matrix with only one eigenvalue and one-dimensional eigenspace is similar to a Jordan block matrix.
基金Projects(40974077,41164004)supported by the National Natural Science Foundation of ChinaProject(2007AA06Z134)supported by the National High Technology Research and Development Program of China+2 种基金Projects(2011GXNSFA018003,0832263)supported by the Natural Science Foundation of Guangxi Province,ChinaProject supported by Program for Excellent Talents in Guangxi Higher Education Institution,ChinaProject supported by the Foundation of Guilin University of Technology,China
文摘The strategies that minimize the overall solution time of multiple linear systems in 3D finite element method (FEM) modeling of direct current (DC) resistivity were discussed. A global stiff matrix is assembled and stored in two parts separately. One part is associated with the volume integral and the other is associated with the subsurface boundary integral. The equivalent multiple linear systems with closer right-hand sides than the original systems were constructed. A recycling Krylov subspace technique was employed to solve the multiple linear systems. The solution of the seed system was used as an initial guess for the subsequent systems. The results of two numerical experiments show that the improved algorithm reduces the iterations and CPU time by almost 50%, compared with the classical preconditioned conjugate gradient method.
基金Project(60835005) supported by the National Nature Science Foundation of China
文摘High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this problem.The basic idea was to search the line manifold clusters hidden in datasets,and then fuse some of the line manifold clusters to construct higher dimensional manifold clusters.The orthogonal distance and the tangent distance were considered together as the linear manifold distance metrics. Spatial neighbor information was fully utilized to construct the original line manifold and optimize line manifolds during the line manifold cluster searching procedure.The results obtained from experiments over real and synthetic data sets demonstrate the superiority of the proposed method over some competing clustering methods in terms of accuracy and computation time.The proposed method is able to obtain high clustering accuracy for various data sets with different sizes,manifold dimensions and noise ratios,which confirms the anti-noise capability and high clustering accuracy of the proposed method for high dimensional data.
文摘This paper gives the truncated version of the Minpert method:the incomplete minimum perturbation algorithm(IMinpert).It is based on an incomplete orthogonal- ization of the Krylov vectors in question,and gives a quasi-minimum backward error solution over the Krylov subspace.In order to make the practical implementation of IMinpert easy and convenient,we give another approximate version of the IMinpert method:A-IMinpert.Theoretical properties of the latter algorithm are discussed.Nu- merical experiments are reported to show the proposed method is effective in practice and is competitive with the Minpert algorithm.
基金This work is supported by the National Natural Science Foundation of China and the Natural Science Foundation of Jiangsu Provinc
文摘The Incomplete Orthogonalization Method (IOM(q)), a truncated version of the Full Orthogonalization Method (FOM) proposed by Saad, has been used for solving large unsymme- tric linear systmes. However, the IOM(q) exhibites irregular convergence behavior with wild oscillation in the residual norms though it tends to decrease in a very slow manner, which is owing to the lack of minimization property over the Krylov subspace. QMR method proposed by Freund, Gutknecht and Nachtigal, owing to its ability to avoid breakdowns and smooth convergence behavior, is a robust iterative solver for general nonsingular unsymmetric linear systems. In this paper, we propose a novel quasi-minimal residual (QMR) variant of the Incomplete Orthogona- lization Method (IOM(q)). Numerical experiments show that it has smooth convergence behavior and is more effective, especially when using its restarted version.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271075)
文摘The seed method is used for solving multiple linear systems A (i)x (i) =b (i) for 1≤i≤s, where the coefficient matrix A (i) and the right-hand side b (i) are different in general. It is known that the CG method is an effective method for symmetric coefficient matrices A (i). In this paper, the FOM method is employed to solve multiple linear sy stems when coefficient matrices are non-symmetric matrices. One of the systems is selected as the seed system which generates a Krylov subspace, then the resi duals of other systems are projected onto the generated Krylov subspace to get t he approximate solutions for the unsolved ones. The whole process is repeated u ntil all the systems are solved.
文摘A double optimal solution of an n-dimensional system of linear equations Ax=b has been derived in an affine m-dimensional Krylov subspace with m <<n.We further develop a double optimal iterative algorithm(DOIA),with the descent direction z being solved from the residual equation Az=r0 by using its double optimal solution,to solve ill-posed linear problem under large noise.The DOIA is proven to be absolutely convergent step-by-step with the square residual error ||r||^2=||b-Ax||^2 being reduced by a positive quantity ||Azk||^2 at each iteration step,which is found to be better than those algorithms based on the minimization of the square residual error in an m-dimensional Krylov subspace.In order to tackle the ill-posed linear problem under a large noise,we also propose a novel double optimal regularization algorithm(DORA)to solve it,which is an improvement of the Tikhonov regularization method.Some numerical tests reveal the high performance of DOIA and DORA against large noise.These methods are of use in the ill-posed problems of structural health-monitoring.
基金Sponsored by the National Natural Science Foundation of China(Grant No. 60272073).
文摘A new algorithm for unsupervised hyperspectral data unmixing is investigated, which includes a modified minimum noise fraction (MNF) transformation and independent component analysis (ICA). The modified MNF transformation is used to reduce noise and remove correlation between neighboring bands. Then the ICA is applied to unmix hyperspectral images, and independent endmembers are obtained from unmixed images by using post-processing which includes image segmentation based on statistical histograms and morphological operations. The experimental results demonstrate that this algorithm can identify endmembers resident in mixed pixels. Meanwhile, the results show the high computational efficiency of the modified MNF transformation. The time consumed by the modified method is almost one fifth of the traditional MNF transformation.
文摘In this paper, we provide new preconditioner for saddle point linear systems with (1,1) blocks that have a high nullity. The preconditioner is block triangular diagonal with two variable relaxation paremeters and it is extension of results in [1] and [2]. Theoretical analysis shows that all eigenvalues of preconditioned matrix is strongly clustered. Finally, numerical tests confirm our analysis.
文摘In this paper, we propose DQMR algorithm for the Drazin-inverse solution of consistent or inconsistent linear systems of the form Ax=b where is a singular and in general non-hermitian matrix that has an arbitrary index. DQMR algorithm for singular systems is analogous to QMR algorithm for non-singular systems. We compare this algorithm with DGMRES by numerical experiments.
文摘The convergence problem of many Krylov subspace methods, e.g., FOM, GCR, GMRES and QMR, for solving large unsymmetric (non-Hermitian) linear systems is considered in a unified way when the coefficient matrix A is defective and its spectrum lies in the open right (left) half plane. Related theoretical error bounds are established and some intrinsic relationships between the convergence speed and the spectrum of A are exposed. It is shown that these methods are likely to converge slowly once one of the three cases occurs: A is defective, the distribution of its spectrum is not favorable, or the Jordan basis of A is ill conditioned. In the proof, some properties on the higher order derivatives of Chebyshev polynomials in an ellipse in the complex plane are derived, one of which corrects a result that has been used extensively in the literature.
基金This research is supported by the Excellent Young Teachers Program of MOE, P. R. C.by National Natural Science Foundation of China (No. 10071047)
文摘In this paper, the similarity-invariant subspaces of B(H), which is tile Banach algebra of all bounded linear operators on a separable infinite-dimensional Hilbert space H, are completely characterized and the representations of bounded linear maps on B(H) which preserve similarity in both directions are given.
文摘In this paper we reconsider the range-restricted GMRES (RRGMRES) method for solving nonsymmetric linear systems. We first review an important result for the usual GMRES method. Then we give an example to show that the range-restricted GMRES method does not admit such a result. Finally, we give a modified result for the range-restricted GMRES method. We point out that the modified version can be used to show that the range-restricted GMRES method is also a regularization method for solving linear ill-posed problems.