Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains cont...Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.展开更多
With the rapid development of urban agglomerations in northwest arid and semiarid regions of China, the scope of the urban heat island(UHI) effect has gradually expanded and gradually connected, and has formed a regio...With the rapid development of urban agglomerations in northwest arid and semiarid regions of China, the scope of the urban heat island(UHI) effect has gradually expanded and gradually connected, and has formed a regional heat island(RHI) with a larger range of impact to the regional environment. However, there are few studies on the heat island effect of urban agglomerations in arid and semiarid regions, so this paper selects the urban agglomeration of Hohhot, Baotou and Ordos(HBO) of Inner Mongolia, China as the study area. Based on the 8-day composite Moderate-resolution Imaging Spectroradiometer(MODIS) surface temperature data(156scenes in all) and land use maps for 2005, 2010, and 2015, we analyze the spatiotemporal distributions of regional heat(cool) islands(RH(C)I) and the responses of surface temperatures to land-use changes in the diurnal and interannual surface cities. The results showed that: 1) from 2005 to 2015, urban areas showed the cold island effect during the day, with the area of the cold island showing a shrinking feature;at night, they showed the heat island effect, with the area of the heat island showing a first decrease and then an increase.2) From 2005 to 2015, the land development(unutilized land to building land) brings the greatest temperature increase(ΔT = 1.36°C)during the day, while the greatest temperature change at night corresponds to the conversion of cultivated land to building land(ΔT =0.78°C) exhibited the largest changes at night. From 2010 to 2015, the land development(grassland to building land) bring the greatest temperature increase(ΔT = 0.85°C) during the day, while the great temperature change at night corresponds to the conversion of water areas to building land(ΔT = 1.38°C) exhibited the largest changes at night. Exploring the spatial and temporal evolution of surface urban heat(cool) islands in urban agglomerations in arid and semiarid regions will help to understand the urbanization characteristics of urban agglomerations and provide a reference for the formulation of policies for the coordinated and healthy development of the region and co-governance of regional environmental problems.展开更多
Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional ch...Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional characteristics of JJAS mean rainfall are revealed by a rotated empirical orthogonal function (REOF) analysis. The analysis identifies three regions of large interannual variability of JJAS rainfall: North China (NC), Northeast China (NEC), and the Taklimakan Desert in Northwest China (TDNWC). Summer rainfall over NC is shown to have displayed a remarkable dry period from the late 1990s; while over NEC, decadal-scale variation with a significant decreasing trend in the last two decades is found, and over TDNWC, evidence of large interannual variability is revealed. Results also show that the interannual variability of JJAS rainfall in northern China is closely associated with the Northern Hemisphere circumglobal teleconnection (CGT). Correlation coefficients between the CGT index and regional-averaged JJAS mean rainfall over NC and NEC were calculated, revealing values of up to 0.50 and 0.53, respectively, both of which exceeded the 99% confidence level.展开更多
Temporally irregular rainfall distribution and inefficient rainwater management create severe constraints on crop production in rainfed semiarid areas. Gravel and plastic film mulching are effective methods for improv...Temporally irregular rainfall distribution and inefficient rainwater management create severe constraints on crop production in rainfed semiarid areas. Gravel and plastic film mulching are effective methods for improving agricultural productivity and water utilization. However, the effects of these mulching practices on soil water supply and plant water use associated with crop yield are not well understood. A 3-yr study was conducted to analyze the occurrence and distribution of dry spells in a semiarid region of Northwest China and to evaluate the effects of non-mulching (CK), gravel mulching (GM) and plastic film mulching (FM) on the soil water supply, plant water use and maize (Zea mays L.) grain yield. Rainfall analysis showed that dry spells of ≥5 days occurred frequently in each of 3 yr, accounting for 59.9-69.2% of the maize growing periods. The 〉15-d dry spells during the jointing stage would expose maize plants to particularly severe water stress. Compared with the CK treatment, both the GM and FM treatments markedly increased soil water storage during the early growing season. In general, the total evapotranspiration (ET) was not significantly different among the three treatments, but the mulched treatments significantly increased the ratio of pre- to post-silking ET, which was closely associated with yield improvement. As a result, the grain yield significantly increased by 17.1, 70.3 and 16.7% for the GM treatment and by 28.3, 87.6 and 38.2% for the FM treatment in 2010, 2011 and 2012, respectively, compared with the CK treatment. It's concluded that both GM and FM are effective strategies for mitigating the impacts of water deficit and improving maize production in semiarid areas. However. FM is more effective than GM.展开更多
The greatest fear of global climate change is drought since in most areas where wheat is grown water is the most important factor influencing wheat yield. Average wheat yield throughout the world is only 30-60% of the...The greatest fear of global climate change is drought since in most areas where wheat is grown water is the most important factor influencing wheat yield. Average wheat yield throughout the world is only 30-60% of the attainable yield potential because water shortage is the major factor preventing the realization of maximum yield. Periods of drought alternating with short periods of available water are common conditions to influence wheat productivity. Such conditions include variable frequency of dry and wet periods, intensity of drought, rate of drought onset and patterns of soil water deficit and/or atmospheric water deficit. It is this deficit and variable water conditions in semiarid environments that influence wheat productivity variously. This paper reviewed the physiological adaptation and benefits associated with deficit and variable water conditions. In addition, it also highlights the compensative effect of limited irrigation and breeding of new varieties for high water use efficiency (WUE) that could improve wheat productivity under water-limited environments in the semiarid regions. Considerable potential for further improvement in wheat WUE and productivity in semiarid environments seems to depend on effective conservation of moisture and efficient use of this limited water such as soil fertility improvement, conservation tillage, residues and film mulch, rain water harvesting for limited irrigation, and breeding for water saving varieties. Different crop, soil and water management strategies should be adjusted according to the conditions that prevail in various semiarid areas. By combining soil and water conservation approaches and adjusting the cropping system by growing drought-tolerant and water-saving cultivars, increase in wheat WUE and productivity could be achieved.展开更多
Using the static opaque chamber method, the soil respiration rates (SR) were measured through the continuous experiments in situ in semiarid Stipa grandis steppe in Xilin River Basin of Inner Mongolia, China from Ju...Using the static opaque chamber method, the soil respiration rates (SR) were measured through the continuous experiments in situ in semiarid Stipa grandis steppe in Xilin River Basin of Inner Mongolia, China from June 2001 to June 2003, in parallel, the difference between the SR and the ecosystem respiration rates (TER) were compared. The results indicated that the seasonal variations of the SR and TER were obvious with higher emissions in growing season and a relatively low efflux level in non-growing season, furthermore, the negative effluxes were found in the observation site in winter; the annual CO2 efflux of total ecosystem ranged from 160.5 gC/(m^2·a) to 162.8 gC/(m^2·a) and that of soil ranged from 118.7 gC/(m^2·a) to 152.3 gC/(m^2·a). The annual SR accounted for about 74.0% to 93.5% of the annual TER, but the results of Analysis of Variance (ANOVA) indicated that the difference between the annual average TER and SR did not reach the significance level of 0.05. The TER was under similar environmental controls as SR, in growing seasons of drought years, the variations of soil moisture at 0-10 cm and 10-20 cm depth could account for 79,1% 95.6% of the changes of the SR and TER, but in non-growing season, more than 75% of the variations of the SR and TER could be explained by the changes of the ground temperature of soil surface layers.展开更多
In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this ...In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this research area: global NPP increases with global warming, and global NPP decreases with global warming. The main reasons for these two opposite results are the tremendous differences among seasonal and annual climate variables, and the growth of plants in accordance with these climate variables. Therefore, it will fail to fully clarify the relation between vegetation growth and climate changes by research that relies solely on annual data. With seasonal climate variables, we may clarify the relation between vegetation growth and climate changes more accurately. Our research examined the arid and semiarid areas in China(ASAC), which account for one quarter of the total area of China. The ecological environment of these areas is fragile and easily affected by human activities. We analyzed the influence of climate changes, especially the changes in seasonal climate variables, on NPP, with Climatic Research Unit(CRU) climatic data and Moderate Resolution Imaging Spectroradiometer(MODIS) satellite remote data, for the years 2000–2010. The results indicate that: for annual climatic data, the percentage of the ASAC in which NPP is positively correlated with temperature is 66.11%, and 91.47% of the ASAC demonstrates a positive correlation between NPP and precipitation. Precipitation is more positively correlated with NPP than temperature in the ASAC. For seasonal climatic data, the correlation between NPP and spring temperature shows significant regional differences. Positive correlation areas are concentrated in the eastern portion of the ASAC, while the western section of the ASAC generally shows a negative correlation. However, in summer, most areas in the ASAC show a negative correlation between NPP and temperature. In autumn, precipitation is less important in the west, as opposed to the east, in which it is critically important. Temperatures in winter are a limiting factor for NPP throughout the region. The findings of this research not only underline the importance of seasonal climate variables for vegetation growth, but also suggest that the effects of seasonal climate variables on NPP should be explored further in related research in the future.展开更多
Short-term nitrous oxide(N2O) pulse emissions caused by precipitation account for a considerable portion of the annual N2O emissions and are greatly influenced by soil nitrogen(N) dynamics. However, in Chinese sem...Short-term nitrous oxide(N2O) pulse emissions caused by precipitation account for a considerable portion of the annual N2O emissions and are greatly influenced by soil nitrogen(N) dynamics. However, in Chinese semiarid temperate steppes, the response of N2O emissions to the coupling changes of precipitation and soil N availability is not yet fully understood. In this study, we conducted two 7-day field experiments in a semiarid temperate typical steppe of Inner Mongolia, China, to investigate the N2O emission pulses resulting from artificial precipitation events(approximately equivalent to 10.0 mm rainfall) under four N addition levels(0, 5, 10 and 20 g N/(m2·a)) using the static opaque chamber technique. The results show that the simulated rainfall during the dry period in 2010 caused greater short-term emission bursts than that during the relatively rainy observation period in 2011(P〈0.05). No significant increase was observed for either the N2O peak effluxes or the weekly cumulative emissions(P〉0.05) with single water addition. The peak values of N2O efflux increased with the increasing N input. Only the treatments with water and medium(WN10) or high N addition(WN20) significantly increased the cumulative N2O emissions(P〈0.01) in both experimental periods. Under drought condition, the variations in soil N2O effluxes were positively correlated with the soil NH4-N concentrations in the three N input treatments(WN5, WN10, and WN20). Besides, the soil moisture and temperature also greatly influenced the N2O pulse emissions, particularly the N2O pulse under the relatively rainy soil condition or in the treatments without N addition(ZN and ZWN). The responses of the plant metabolism to the varying precipitation distribution and the length of drought period prior to rainfall could greatly affect the soil N dynamics and N2O emission pulses in semiarid grasslands.展开更多
With data from the project Collaborative Observation of Semi-arid/Arid Regions in North China, collected during July and September 2008, the spatial patterns of land surface processes over arid and semiarid regions ha...With data from the project Collaborative Observation of Semi-arid/Arid Regions in North China, collected during July and September 2008, the spatial patterns of land surface processes over arid and semiarid regions have been investigated based on the ordinary Kriging interpolation approach. Generally, for the radiation processes, downward and upward short-wave radiation have a uniformly increasing trend with latitude, but the spatial patterns of long-wave radiation present notable regional differences: both upward and downward long-wave radiation increase with latitude in the west of North China, while in the east they vary inversely with latitude, suggesting surface temperature and clouds respectively have feedbacks to the long-wave radiation in the west and east of North China. The surface net radiation basically has a negative latitudinal trend. Long-wave radiation budget plays an important role in the spatial pattern of surface net radiation, particularly in the east of North China, although short-wave radiation budget largely determines the magnitude of surface net radiation. For the energy processes, latent and sensible heat flux varies conversely with latitude: more available land surface energy is consumed by evaporating soil water at lower latitudes while more is used for heating the atmosphere at higher latitudes. A soil heat flux maximum and minimum are found in Loess Plateau and Qinghai Plateau respectively, and a maximum is seen in the northeast China.展开更多
This study seeks a routine to quantify spatial pattern of land cover changes in semiarid environment of China based on post-classification comparison method. The method consists of three major steps: (1) the image cla...This study seeks a routine to quantify spatial pattern of land cover changes in semiarid environment of China based on post-classification comparison method. The method consists of three major steps: (1) the image classification and unification of classified results based on two-level land cover classification themes, (2) the establishment of land cover change classes based on an unification land cover classification theme, (3) the reclassification and mapping of land cover change classes with three overall classes including no-change, gain and loss based on the unification land cover class. This method was applied to detect the spatial pattern of land cover changes in Yinchuan Plain, one of famous irrigation agricultural zones of the Yellow River, China. The results showed the land cover had undergone a remarkable change from 1991 to 2002 in the study area (the changed area was over 30%). Rapid increase of cropland (12.5%), built-up area (131.4%) and rapid decrease of bare ground (51.7%) were alarming. The spatial pattern of land cover changes showed clear regional difference in the study area and was clearly related to human activities or natural factors. Thus, it obtained a better understanding of the human impact on the fragile ecosystem of China’s semiarid environment.展开更多
Forest ecosystems on China's Loess Plateau are receiving increasing attention because of their special importance in carbon fixation and conservation of soil and water in the region.Soil respiration was investigat...Forest ecosystems on China's Loess Plateau are receiving increasing attention because of their special importance in carbon fixation and conservation of soil and water in the region.Soil respiration was investigated in Platycladus orientalis forest stands of the region at diurnal and seasonal scales.The daily and seasonal average values of soil respiration were 2.53μmol·m^(-2)·s^(-1)and 3.78μmol·m^(-2)·s^(-1),respectively.On a diurnal and seasonal scale,the variations of soil respiration in the P.orientalis forest show a one-peak pattern.The diurnal dynamics of soil respiration were mainly driven by soil temperature.However,the relationship between soil respiration and soil temperature was not significant,mainly because of the hysteresis effect of soil respiration on soil temperature.Soil moisture plays another dominant role in the ecosystem carbon balance,but was not affected by soil temperature in P.orientalis forest on the semiarid Loess Plateau.展开更多
Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-makin...Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-making.In this study,the annual and seasonal spatio-temporal patterns of change in average temperature and precipitation and their influencing factors in the ASRC were analyzed using the Mann-Kendall test,linear tendency estimation,accumulative anomaly and the Pearson’s correlation coefficient.The results showed that both annual average temperature and average annual precipitation increased in the ASRC during 1951–2019.The temperature rose by about 1.93℃and precipitation increased by about 24 mm.The seasonal average temperature presented a significant increase trend,and the seasonal precipitation was conspicuous ascension in spring and winter.The spatio-temporal patterns of change in temperature and precipitation differed,with the southwest area showing the most obvious variation in each season.Abrupt changes in annual and seasonal average temperature and precipitation occurred mainly around the 1990 s and after 2000,respectively.Atmospheric circulation had an important effect on the trends and abrupt changes in temperature and precipitation.The East Asian summer monsoon had the largest impact on the trend of average annual temperature,as well as on the abrupt changes of annual average temperature and precipitation.Temperature and precipitation changes in the ASRC were influenced by long-term and short-term as well as direct and indirect anthropogenic and natural factors.This study identifies the characteristics of spatio-temporal variations in temperature and precipitation in the ASRC and provides a scientific reference for the formulation of climate change responses.展开更多
Climate change is a global challenge to both sustainable livelihoods and economic development. In Tanzania as in most African countries, farming depends almost entirely on rainfall, a situation that makes agriculture ...Climate change is a global challenge to both sustainable livelihoods and economic development. In Tanzania as in most African countries, farming depends almost entirely on rainfall, a situation that makes agriculture and thus rural livelihoods especially in semiarid environments particularly vulnerable to climate change. This study analyses the impacts of climate change and variability on rural livelihoods with particular focus on agricultural production, food security and adaptive capacities in semiarid areas of Tanzania. The methods used in this study included focus group discussions, key informant interviews, household surveys and field observations. Results from the study indicate that communities understood climate change in terms of variability in rainfall patterns and amount, temperature patterns, wind, water availability, increased incidences of drought and decreased agricultural productivity. Communities in the study area acknowledged that while rainfall amounts have decreased over the last thirty years, temperatures have increased;an experience is also supported by meteorological data. Such changes were claimed to have reduced agricultural productivity particularly due to prolonged drought, inadequate and uneven distribution of rainfall as well as unpredictable onset and ending of rains. Stressors such as crop diseases and pests, low soil fertility and inadequate extension services were also reported to contribute to the decline in agricultural productivity and re-occurrence of food insecurity. In response, communities have developed multiple adaptation strategies, including growing of drought tolerant and early maturing crop varieties, increasing wetlands cultivation, water harvesting for small-scale irrigation and livestock keeping. However, households with limited livelihood assets are more vulnerable to the impacts of climate change and food insecurity. The study argues that diversification of adaptive strategies, such as water harvesting for small-scale irrigation, integration of livestock and crop production are crucial to ensuring sustainable livelihood in a changing climate.展开更多
Fine roots are the most active and functional component of root systems and play a significant role in the acquisition of soil resources. Density is an important structural factor in forest plantations but information...Fine roots are the most active and functional component of root systems and play a significant role in the acquisition of soil resources. Density is an important structural factor in forest plantations but information on changes in fine roots along a density gradient is limited. In this study, plantations of black locust (Robinia pseudoacacia L.) and Chinese pine (Pinus tabuliformis Carr.) with four density classes were analyzed for the influence of soil and leaf traits on fine root growth. Fine root biomass increased with stand density. High fine root biomass was achieved through increases in the fine root production and turnover rate in the high-density black locust plantations and through an increase in fine root production in the pine plantations. In the high-density Chinese pine stand, there was a high fine root turnover which, coupled with high fine root production, contributed to a high fine root biomass. Overall, fine root production and turnover rate were closely related to soil volumetric water content in both kinds of plantations, while fine root biomass, especially the component of necromass, was related to soil nutrient status, which refers to phosphorous content in black locust plantations and nitrogen content in Chinese pine plantations. There was a close linkage between leaf area index and fine root dynamics in the black locust plantations but not in the pine plantations.展开更多
Under the soil and climate conditions in semi-arid area of Jilin Province, the growth and development, yield and its components of maize under one-off fertilization and traditional fertilization were compared and anal...Under the soil and climate conditions in semi-arid area of Jilin Province, the growth and development, yield and its components of maize under one-off fertilization and traditional fertilization were compared and analyzed in this study. The results showed that, under the same field management, the two fertilization methods had no effect on the time when maize plants grew into each growth stage; the one-off fertilization was slightly better than the traditional fertilization in dry weight of each part of the plant, ear traits and yield; and the values of the two methods of fertilization varied from each other and were unstable. In production, the one-off fertilization saves the top dressing process, simplifes the operation process and reduces the production input, which is of great signifcance to the development of modern agriculture.展开更多
The drag coefficient (Ca) and heat transfer coefficient (Ch) with the bulk transfer scheme are usually used to calculate the momentum and heat fluxes in meteorological models. The aerodynamic roughness length (z0...The drag coefficient (Ca) and heat transfer coefficient (Ch) with the bulk transfer scheme are usually used to calculate the momentum and heat fluxes in meteorological models. The aerodynamic roughness length (z0m) and thermal roughness length (z0h) are two crucial parameters for bulk transfer equations. To improve the meteorological models, the seasonal and interannual variations of Z0m, Z0h, coefficient kB-1, Cd, and Ch were investigated based on eddy covariance data over different grazed semiarid grasslands of Inner Mongolia during the growing seasons (May to September) from 2005 to 2008. For an ungrazed Leymus chinensis grassland (ungrazed since 1979), Z0m and z0h had significant seasonal and in- terannual variations. Zorn was affected by the amount and distribution of rainfall, kB 1 exhibited a relatively negative variation compared with z0h, which indicates that the seasonal variation of z0h cannot be described by kB 1. To parameterize Zorn and z0h, the linear regressions between ln(z0m), ln(z0h), and the leaf area index (LAI) were performed with R2=0.71 and 0.83. The monthly average kB-1 was found to decrease linearly with LAI. The four-year averaged values of Ca and Ch were 4.5 × 10^-3 and 3.9× 10^-3, respectively. The monthly average Cd only varied by 8% while the variation of Ch was 18%, which reflects the dif- ferent impacts of dead vegetation on momentum and heat transfer at this natural grassland. Moreover, with the removal of vegetation cover, grazing intensities reduced Z0m, Z0h, Cd, and Ch.展开更多
Climate warming increases the variability in runoff of semiarid mountains where seasonally-frozen ground is widely distributed.However,what is not well understood are the processes of runoff,hydrological drivers,and f...Climate warming increases the variability in runoff of semiarid mountains where seasonally-frozen ground is widely distributed.However,what is not well understood are the processes of runoff,hydrological drivers,and freeze-thaw cycles in seasonally-frozen ground in semiarid mountains.To understand how freeze-thaw cycles affect runoff processes in seasonally-frozen ground,we monitored hydrological processes in a typical headwater catchment with seasonally-frozen ground in Qilian Mountain,China,from 2002 to 2017.We analyzed the responses of runoff to temperature,precipitation,and seasonally-frozen ground to quantify process characteristics and driving factors.The results show that annual runoff was 88.5 mm accounting for 25.6%of rainfall,mainly concentrated in May to October,with baseflow of 36.44 mm.Peak runoff occurred in June,August,and September,i.e.,accounting for spring and summer floods.Runoff during the spring flood was produced by a mix of rainfall,melting snow,and melting seasonally-frozen ground,and had a significant correlation with air temperature.Runoff was mainly due to precipitation accumulation during the summer flood.Air temperature,average soil temperature at 0−50 cm depth,and frozen soil depth variable explained 59.60%of the variation of runoff in the thawing period,while precipitation variable explained 21.9%.Thawing-period runoff and soil temperature had a>0.6 correlation coefficient(P<0.05).In the rainfall-period,runoff was also affected by temperature,soil moisture,and precipitation,which explained 33.6%,34.1%and 18.1%,respectively.Our results show that increasing temperature and precipitation will have an irreversible impact on the hydrological regime in mountainous basins where seasonally-frozen ground is widely distributed.展开更多
duniperus sabina Linnaeus, an evergreen shrub with prostrate life form, can effectively prevent sand moving and is an important tree species for reforestation in semiarid areas of China. It has laterally distributed a...duniperus sabina Linnaeus, an evergreen shrub with prostrate life form, can effectively prevent sand moving and is an important tree species for reforestation in semiarid areas of China. It has laterally distributed adventitious roots and a deeply distributed main root system. To detect water movement between the main root system and adventitious roots, we adopted heat pulse sensors using the Heat Ratio Method, a high precision method for measuring low sap flow rates. Two sensors were implanted in each individual in the stem between the main root system and adventitious roots, and another two in lateral stems distal to all the roots. Positive sap flows during nighttime, even under saturated air moisture conditions, were detected only between the main root system and adventitious roots under drought conditions, and the rate of flow increased as drought progressed and decreased or disappeared after rain events. The results demonstrated the existence of water movement from the main root system to adventitious roots, and combined with the high contribution of nighttime sap flow to transpiration (11%-16%) the results indicate that it also involves the process of hydraulic lift, a water movement from moist subsoil to dry surface soils. Integrated water use strategy between the main root system and adventitious roots via the process of hydraulic lift of soil water maximizes water acquisition efficiency from both subsoil water and water from rain pulses on the soil surface; this increases survivability in the water-limited environment of semiarid areas.展开更多
The arid and semiarid land in China covers a vast area, about 3.5 million km^2(not coun-ting the Tibet Plateau),where natural resources are very aboundant. In this area, the totalsolar radiation is as high as 140--160...The arid and semiarid land in China covers a vast area, about 3.5 million km^2(not coun-ting the Tibet Plateau),where natural resources are very aboundant. In this area, the totalsolar radiation is as high as 140--160 kilocalorie / cm^2. a. There are about 167 million ha ofvarious grasslands, accounting for nearly 60% of the national grassland area.展开更多
The combination of different topographic and climatic conditions results in varied precipitation-runoff relations, which in turn influences hillslope erosion, sediment transport and bedrock incision across mountainous...The combination of different topographic and climatic conditions results in varied precipitation-runoff relations, which in turn influences hillslope erosion, sediment transport and bedrock incision across mountainous landscapes. The runoff coefficient is a suitable tool to represent precipitation-runoff relations, but the spatial distribution of the runoff coefficient across tectonically active mountains in semi-arid environments has received little attention because of limited data availability. We calculated annual runoff coefficients over 22 years for 26 drainage basins across the semi-arid Qilian Mountains based on:(i) annual discharge records;and(ii) the China Meteorological Forcing Dataset to enhance our understanding of the precipitation-runoff processes. The mean annual runoff coefficients show no obvious spatial trends. When compared to potential controlling factors, mean annual runoff coefficients are highly correlated with mean slope rather than any climatic characteristics(e.g., mean annualprecipitation and Normalized Difference Vegetation Index). The slope-dependent runoff coefficient could theoretically have enhanced the topographic control on erosion rates and dampen the influence of precipitation. The enhanced discharge for drainage basins with less precipitation but steep topography in the western Qilian Mountains will enable fluvial incision to keep pace with ongoing uplift caused by the northward growth of the Qilian Mountains. The geomorphic implications are that tectonic rather than climatic factors are more significant for long-term landscape evolution in arid and semi-arid contexts.展开更多
基金This research was supported by the National Key Research and Development Program of China(2021YFE0101302and2021YFD1901102)the National Natural Science Foundation of China(31801314 and 31901475)。
文摘Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.
文摘With the rapid development of urban agglomerations in northwest arid and semiarid regions of China, the scope of the urban heat island(UHI) effect has gradually expanded and gradually connected, and has formed a regional heat island(RHI) with a larger range of impact to the regional environment. However, there are few studies on the heat island effect of urban agglomerations in arid and semiarid regions, so this paper selects the urban agglomeration of Hohhot, Baotou and Ordos(HBO) of Inner Mongolia, China as the study area. Based on the 8-day composite Moderate-resolution Imaging Spectroradiometer(MODIS) surface temperature data(156scenes in all) and land use maps for 2005, 2010, and 2015, we analyze the spatiotemporal distributions of regional heat(cool) islands(RH(C)I) and the responses of surface temperatures to land-use changes in the diurnal and interannual surface cities. The results showed that: 1) from 2005 to 2015, urban areas showed the cold island effect during the day, with the area of the cold island showing a shrinking feature;at night, they showed the heat island effect, with the area of the heat island showing a first decrease and then an increase.2) From 2005 to 2015, the land development(unutilized land to building land) brings the greatest temperature increase(ΔT = 1.36°C)during the day, while the greatest temperature change at night corresponds to the conversion of cultivated land to building land(ΔT =0.78°C) exhibited the largest changes at night. From 2010 to 2015, the land development(grassland to building land) bring the greatest temperature increase(ΔT = 0.85°C) during the day, while the great temperature change at night corresponds to the conversion of water areas to building land(ΔT = 1.38°C) exhibited the largest changes at night. Exploring the spatial and temporal evolution of surface urban heat(cool) islands in urban agglomerations in arid and semiarid regions will help to understand the urbanization characteristics of urban agglomerations and provide a reference for the formulation of policies for the coordinated and healthy development of the region and co-governance of regional environmental problems.
基金supported by the CAS Innovation Key Program (Grant No. KZCX2-YW-BR-14)National Basic Research Program of China (2011CB309704)+1 种基金Special Scientific Research Project for Public Interest (GrantNo. GYHY201006021)the National Natural Science Foundation of China (Grant Nos. 40890155, 40775051,U0733002)
文摘Using the latest daily observational rainfall datasets for the period 1961–2008, the present study investigates the interannual variability of June–September (JJAS) mean rainfall in northern China. The regional characteristics of JJAS mean rainfall are revealed by a rotated empirical orthogonal function (REOF) analysis. The analysis identifies three regions of large interannual variability of JJAS rainfall: North China (NC), Northeast China (NEC), and the Taklimakan Desert in Northwest China (TDNWC). Summer rainfall over NC is shown to have displayed a remarkable dry period from the late 1990s; while over NEC, decadal-scale variation with a significant decreasing trend in the last two decades is found, and over TDNWC, evidence of large interannual variability is revealed. Results also show that the interannual variability of JJAS rainfall in northern China is closely associated with the Northern Hemisphere circumglobal teleconnection (CGT). Correlation coefficients between the CGT index and regional-averaged JJAS mean rainfall over NC and NEC were calculated, revealing values of up to 0.50 and 0.53, respectively, both of which exceeded the 99% confidence level.
基金financially supported by the National Natural Science Foundation of China (31270553)the National Basic Research Program of China (2009CB118604)the Special Fund for Agro-Scientific Research in the Public Interest of China (201103003)
文摘Temporally irregular rainfall distribution and inefficient rainwater management create severe constraints on crop production in rainfed semiarid areas. Gravel and plastic film mulching are effective methods for improving agricultural productivity and water utilization. However, the effects of these mulching practices on soil water supply and plant water use associated with crop yield are not well understood. A 3-yr study was conducted to analyze the occurrence and distribution of dry spells in a semiarid region of Northwest China and to evaluate the effects of non-mulching (CK), gravel mulching (GM) and plastic film mulching (FM) on the soil water supply, plant water use and maize (Zea mays L.) grain yield. Rainfall analysis showed that dry spells of ≥5 days occurred frequently in each of 3 yr, accounting for 59.9-69.2% of the maize growing periods. The 〉15-d dry spells during the jointing stage would expose maize plants to particularly severe water stress. Compared with the CK treatment, both the GM and FM treatments markedly increased soil water storage during the early growing season. In general, the total evapotranspiration (ET) was not significantly different among the three treatments, but the mulched treatments significantly increased the ratio of pre- to post-silking ET, which was closely associated with yield improvement. As a result, the grain yield significantly increased by 17.1, 70.3 and 16.7% for the GM treatment and by 28.3, 87.6 and 38.2% for the FM treatment in 2010, 2011 and 2012, respectively, compared with the CK treatment. It's concluded that both GM and FM are effective strategies for mitigating the impacts of water deficit and improving maize production in semiarid areas. However. FM is more effective than GM.
基金T his paper was supported by the Major State Basic Research Development Program of People's Republic of China(G1999011708)the Key Laboratory Visiting Scholar Foundation of Chinese Education Ministry.
文摘The greatest fear of global climate change is drought since in most areas where wheat is grown water is the most important factor influencing wheat yield. Average wheat yield throughout the world is only 30-60% of the attainable yield potential because water shortage is the major factor preventing the realization of maximum yield. Periods of drought alternating with short periods of available water are common conditions to influence wheat productivity. Such conditions include variable frequency of dry and wet periods, intensity of drought, rate of drought onset and patterns of soil water deficit and/or atmospheric water deficit. It is this deficit and variable water conditions in semiarid environments that influence wheat productivity variously. This paper reviewed the physiological adaptation and benefits associated with deficit and variable water conditions. In addition, it also highlights the compensative effect of limited irrigation and breeding of new varieties for high water use efficiency (WUE) that could improve wheat productivity under water-limited environments in the semiarid regions. Considerable potential for further improvement in wheat WUE and productivity in semiarid environments seems to depend on effective conservation of moisture and efficient use of this limited water such as soil fertility improvement, conservation tillage, residues and film mulch, rain water harvesting for limited irrigation, and breeding for water saving varieties. Different crop, soil and water management strategies should be adjusted according to the conditions that prevail in various semiarid areas. By combining soil and water conservation approaches and adjusting the cropping system by growing drought-tolerant and water-saving cultivars, increase in wheat WUE and productivity could be achieved.
基金The State Key Basic Research Development and Planning Project (No. 2002CB412503) the Knowledge Innovation Program of theChinese Academy of Sciences (No. KZCX1-SW-01-04) the Knowledge Innovation Project of the Institute of Geographic Sciences and NaturalResources Research, Chinese Academy of Sciences(No. CXIOG-E01-03-01) and the National Natural Science Foundation of China(No. 40501072)
文摘Using the static opaque chamber method, the soil respiration rates (SR) were measured through the continuous experiments in situ in semiarid Stipa grandis steppe in Xilin River Basin of Inner Mongolia, China from June 2001 to June 2003, in parallel, the difference between the SR and the ecosystem respiration rates (TER) were compared. The results indicated that the seasonal variations of the SR and TER were obvious with higher emissions in growing season and a relatively low efflux level in non-growing season, furthermore, the negative effluxes were found in the observation site in winter; the annual CO2 efflux of total ecosystem ranged from 160.5 gC/(m^2·a) to 162.8 gC/(m^2·a) and that of soil ranged from 118.7 gC/(m^2·a) to 152.3 gC/(m^2·a). The annual SR accounted for about 74.0% to 93.5% of the annual TER, but the results of Analysis of Variance (ANOVA) indicated that the difference between the annual average TER and SR did not reach the significance level of 0.05. The TER was under similar environmental controls as SR, in growing seasons of drought years, the variations of soil moisture at 0-10 cm and 10-20 cm depth could account for 79,1% 95.6% of the changes of the SR and TER, but in non-growing season, more than 75% of the variations of the SR and TER could be explained by the changes of the ground temperature of soil surface layers.
基金the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences(No.XDA05060104)
文摘In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this research area: global NPP increases with global warming, and global NPP decreases with global warming. The main reasons for these two opposite results are the tremendous differences among seasonal and annual climate variables, and the growth of plants in accordance with these climate variables. Therefore, it will fail to fully clarify the relation between vegetation growth and climate changes by research that relies solely on annual data. With seasonal climate variables, we may clarify the relation between vegetation growth and climate changes more accurately. Our research examined the arid and semiarid areas in China(ASAC), which account for one quarter of the total area of China. The ecological environment of these areas is fragile and easily affected by human activities. We analyzed the influence of climate changes, especially the changes in seasonal climate variables, on NPP, with Climatic Research Unit(CRU) climatic data and Moderate Resolution Imaging Spectroradiometer(MODIS) satellite remote data, for the years 2000–2010. The results indicate that: for annual climatic data, the percentage of the ASAC in which NPP is positively correlated with temperature is 66.11%, and 91.47% of the ASAC demonstrates a positive correlation between NPP and precipitation. Precipitation is more positively correlated with NPP than temperature in the ASAC. For seasonal climatic data, the correlation between NPP and spring temperature shows significant regional differences. Positive correlation areas are concentrated in the eastern portion of the ASAC, while the western section of the ASAC generally shows a negative correlation. However, in summer, most areas in the ASAC show a negative correlation between NPP and temperature. In autumn, precipitation is less important in the west, as opposed to the east, in which it is critically important. Temperatures in winter are a limiting factor for NPP throughout the region. The findings of this research not only underline the importance of seasonal climate variables for vegetation growth, but also suggest that the effects of seasonal climate variables on NPP should be explored further in related research in the future.
基金founded by the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX2-EW-302)the National Natural Science Foundation of China (41073061, 41330528, 41203054)
文摘Short-term nitrous oxide(N2O) pulse emissions caused by precipitation account for a considerable portion of the annual N2O emissions and are greatly influenced by soil nitrogen(N) dynamics. However, in Chinese semiarid temperate steppes, the response of N2O emissions to the coupling changes of precipitation and soil N availability is not yet fully understood. In this study, we conducted two 7-day field experiments in a semiarid temperate typical steppe of Inner Mongolia, China, to investigate the N2O emission pulses resulting from artificial precipitation events(approximately equivalent to 10.0 mm rainfall) under four N addition levels(0, 5, 10 and 20 g N/(m2·a)) using the static opaque chamber technique. The results show that the simulated rainfall during the dry period in 2010 caused greater short-term emission bursts than that during the relatively rainy observation period in 2011(P〈0.05). No significant increase was observed for either the N2O peak effluxes or the weekly cumulative emissions(P〉0.05) with single water addition. The peak values of N2O efflux increased with the increasing N input. Only the treatments with water and medium(WN10) or high N addition(WN20) significantly increased the cumulative N2O emissions(P〈0.01) in both experimental periods. Under drought condition, the variations in soil N2O effluxes were positively correlated with the soil NH4-N concentrations in the three N input treatments(WN5, WN10, and WN20). Besides, the soil moisture and temperature also greatly influenced the N2O pulse emissions, particularly the N2O pulse under the relatively rainy soil condition or in the treatments without N addition(ZN and ZWN). The responses of the plant metabolism to the varying precipitation distribution and the length of drought period prior to rainfall could greatly affect the soil N dynamics and N2O emission pulses in semiarid grasslands.
基金supported by the State Key Program of National Natural Science of China (Grant No. 40830957)
文摘With data from the project Collaborative Observation of Semi-arid/Arid Regions in North China, collected during July and September 2008, the spatial patterns of land surface processes over arid and semiarid regions have been investigated based on the ordinary Kriging interpolation approach. Generally, for the radiation processes, downward and upward short-wave radiation have a uniformly increasing trend with latitude, but the spatial patterns of long-wave radiation present notable regional differences: both upward and downward long-wave radiation increase with latitude in the west of North China, while in the east they vary inversely with latitude, suggesting surface temperature and clouds respectively have feedbacks to the long-wave radiation in the west and east of North China. The surface net radiation basically has a negative latitudinal trend. Long-wave radiation budget plays an important role in the spatial pattern of surface net radiation, particularly in the east of North China, although short-wave radiation budget largely determines the magnitude of surface net radiation. For the energy processes, latent and sensible heat flux varies conversely with latitude: more available land surface energy is consumed by evaporating soil water at lower latitudes while more is used for heating the atmosphere at higher latitudes. A soil heat flux maximum and minimum are found in Loess Plateau and Qinghai Plateau respectively, and a maximum is seen in the northeast China.
基金supported by National Key Basic Research and Development Program Grant (2006CB701305)Hong Kong Research Grants Council Competitive Earmarked Research Grant (HKBU 2029/07P)+1 种基金Hong Kong Baptist University Faculty Research Grant (FRG/06-07/II-76)China National Natural Science Foundation Grant (40101028)
文摘This study seeks a routine to quantify spatial pattern of land cover changes in semiarid environment of China based on post-classification comparison method. The method consists of three major steps: (1) the image classification and unification of classified results based on two-level land cover classification themes, (2) the establishment of land cover change classes based on an unification land cover classification theme, (3) the reclassification and mapping of land cover change classes with three overall classes including no-change, gain and loss based on the unification land cover class. This method was applied to detect the spatial pattern of land cover changes in Yinchuan Plain, one of famous irrigation agricultural zones of the Yellow River, China. The results showed the land cover had undergone a remarkable change from 1991 to 2002 in the study area (the changed area was over 30%). Rapid increase of cropland (12.5%), built-up area (131.4%) and rapid decrease of bare ground (51.7%) were alarming. The spatial pattern of land cover changes showed clear regional difference in the study area and was clearly related to human activities or natural factors. Thus, it obtained a better understanding of the human impact on the fragile ecosystem of China’s semiarid environment.
基金National Natural Science Foundation of China (41201258) The Chinese Academy of Sciences through the West Light Foundation to Shi Wei-Yu and Strategic Priority Research Program (XDA05050202)
文摘Forest ecosystems on China's Loess Plateau are receiving increasing attention because of their special importance in carbon fixation and conservation of soil and water in the region.Soil respiration was investigated in Platycladus orientalis forest stands of the region at diurnal and seasonal scales.The daily and seasonal average values of soil respiration were 2.53μmol·m^(-2)·s^(-1)and 3.78μmol·m^(-2)·s^(-1),respectively.On a diurnal and seasonal scale,the variations of soil respiration in the P.orientalis forest show a one-peak pattern.The diurnal dynamics of soil respiration were mainly driven by soil temperature.However,the relationship between soil respiration and soil temperature was not significant,mainly because of the hysteresis effect of soil respiration on soil temperature.Soil moisture plays another dominant role in the ecosystem carbon balance,but was not affected by soil temperature in P.orientalis forest on the semiarid Loess Plateau.
基金Under the auspices of Fujian Natural Science Foundation General Program(No.2020J01572)the Scientific Research Project on Outstanding Young of the Fujian Agriculture and Forestry University(No.XJQ201920)。
文摘Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-making.In this study,the annual and seasonal spatio-temporal patterns of change in average temperature and precipitation and their influencing factors in the ASRC were analyzed using the Mann-Kendall test,linear tendency estimation,accumulative anomaly and the Pearson’s correlation coefficient.The results showed that both annual average temperature and average annual precipitation increased in the ASRC during 1951–2019.The temperature rose by about 1.93℃and precipitation increased by about 24 mm.The seasonal average temperature presented a significant increase trend,and the seasonal precipitation was conspicuous ascension in spring and winter.The spatio-temporal patterns of change in temperature and precipitation differed,with the southwest area showing the most obvious variation in each season.Abrupt changes in annual and seasonal average temperature and precipitation occurred mainly around the 1990 s and after 2000,respectively.Atmospheric circulation had an important effect on the trends and abrupt changes in temperature and precipitation.The East Asian summer monsoon had the largest impact on the trend of average annual temperature,as well as on the abrupt changes of annual average temperature and precipitation.Temperature and precipitation changes in the ASRC were influenced by long-term and short-term as well as direct and indirect anthropogenic and natural factors.This study identifies the characteristics of spatio-temporal variations in temperature and precipitation in the ASRC and provides a scientific reference for the formulation of climate change responses.
文摘Climate change is a global challenge to both sustainable livelihoods and economic development. In Tanzania as in most African countries, farming depends almost entirely on rainfall, a situation that makes agriculture and thus rural livelihoods especially in semiarid environments particularly vulnerable to climate change. This study analyses the impacts of climate change and variability on rural livelihoods with particular focus on agricultural production, food security and adaptive capacities in semiarid areas of Tanzania. The methods used in this study included focus group discussions, key informant interviews, household surveys and field observations. Results from the study indicate that communities understood climate change in terms of variability in rainfall patterns and amount, temperature patterns, wind, water availability, increased incidences of drought and decreased agricultural productivity. Communities in the study area acknowledged that while rainfall amounts have decreased over the last thirty years, temperatures have increased;an experience is also supported by meteorological data. Such changes were claimed to have reduced agricultural productivity particularly due to prolonged drought, inadequate and uneven distribution of rainfall as well as unpredictable onset and ending of rains. Stressors such as crop diseases and pests, low soil fertility and inadequate extension services were also reported to contribute to the decline in agricultural productivity and re-occurrence of food insecurity. In response, communities have developed multiple adaptation strategies, including growing of drought tolerant and early maturing crop varieties, increasing wetlands cultivation, water harvesting for small-scale irrigation and livestock keeping. However, households with limited livelihood assets are more vulnerable to the impacts of climate change and food insecurity. The study argues that diversification of adaptive strategies, such as water harvesting for small-scale irrigation, integration of livestock and crop production are crucial to ensuring sustainable livelihood in a changing climate.
基金The study was financially supported by the National Key R&D Program of China(2017YFC0504601).
文摘Fine roots are the most active and functional component of root systems and play a significant role in the acquisition of soil resources. Density is an important structural factor in forest plantations but information on changes in fine roots along a density gradient is limited. In this study, plantations of black locust (Robinia pseudoacacia L.) and Chinese pine (Pinus tabuliformis Carr.) with four density classes were analyzed for the influence of soil and leaf traits on fine root growth. Fine root biomass increased with stand density. High fine root biomass was achieved through increases in the fine root production and turnover rate in the high-density black locust plantations and through an increase in fine root production in the pine plantations. In the high-density Chinese pine stand, there was a high fine root turnover which, coupled with high fine root production, contributed to a high fine root biomass. Overall, fine root production and turnover rate were closely related to soil volumetric water content in both kinds of plantations, while fine root biomass, especially the component of necromass, was related to soil nutrient status, which refers to phosphorous content in black locust plantations and nitrogen content in Chinese pine plantations. There was a close linkage between leaf area index and fine root dynamics in the black locust plantations but not in the pine plantations.
基金Supported by National Maize Industry Technical System Project(CARS-02-42)Scientific and Technological Innovation Project for High Yield and Efficiency of Food Grain(2017YFD0300605)Gongzhuling Scientific Observation and Experiment Station for High Efficiency Water Use in Crop,Ministry of Agriculture~~
文摘Under the soil and climate conditions in semi-arid area of Jilin Province, the growth and development, yield and its components of maize under one-off fertilization and traditional fertilization were compared and analyzed in this study. The results showed that, under the same field management, the two fertilization methods had no effect on the time when maize plants grew into each growth stage; the one-off fertilization was slightly better than the traditional fertilization in dry weight of each part of the plant, ear traits and yield; and the values of the two methods of fertilization varied from each other and were unstable. In production, the one-off fertilization saves the top dressing process, simplifes the operation process and reduces the production input, which is of great signifcance to the development of modern agriculture.
基金supported by the German Science Foundation (DFG) within the Research Group 536"MAGIM" (Matter fluxes in grasslands of Inner Mongolia as influenced by stocking rate) under Grant BE 172/7-1 in cooperation with Inner Mongolia Grassland Ecosystem Research Stationthe National Basic Research Program of China (973 Program) under Grant 2010CB951801the Strategic Priority Research Program of Chinese Academy of Sciences under Grant XDA05110102
文摘The drag coefficient (Ca) and heat transfer coefficient (Ch) with the bulk transfer scheme are usually used to calculate the momentum and heat fluxes in meteorological models. The aerodynamic roughness length (z0m) and thermal roughness length (z0h) are two crucial parameters for bulk transfer equations. To improve the meteorological models, the seasonal and interannual variations of Z0m, Z0h, coefficient kB-1, Cd, and Ch were investigated based on eddy covariance data over different grazed semiarid grasslands of Inner Mongolia during the growing seasons (May to September) from 2005 to 2008. For an ungrazed Leymus chinensis grassland (ungrazed since 1979), Z0m and z0h had significant seasonal and in- terannual variations. Zorn was affected by the amount and distribution of rainfall, kB 1 exhibited a relatively negative variation compared with z0h, which indicates that the seasonal variation of z0h cannot be described by kB 1. To parameterize Zorn and z0h, the linear regressions between ln(z0m), ln(z0h), and the leaf area index (LAI) were performed with R2=0.71 and 0.83. The monthly average kB-1 was found to decrease linearly with LAI. The four-year averaged values of Ca and Ch were 4.5 × 10^-3 and 3.9× 10^-3, respectively. The monthly average Cd only varied by 8% while the variation of Ch was 18%, which reflects the dif- ferent impacts of dead vegetation on momentum and heat transfer at this natural grassland. Moreover, with the removal of vegetation cover, grazing intensities reduced Z0m, Z0h, Cd, and Ch.
基金the National Natural Science Foundation of China(Nos.41901044,41621001 and 41701296)the"CAS Light of West China"Program(29Y829861)Foundation for Excellent Youth Scholars of Northwest Institute of Eco‐Environment and Resources,Chinese Academy of Sciences(FEYS2019019).
文摘Climate warming increases the variability in runoff of semiarid mountains where seasonally-frozen ground is widely distributed.However,what is not well understood are the processes of runoff,hydrological drivers,and freeze-thaw cycles in seasonally-frozen ground in semiarid mountains.To understand how freeze-thaw cycles affect runoff processes in seasonally-frozen ground,we monitored hydrological processes in a typical headwater catchment with seasonally-frozen ground in Qilian Mountain,China,from 2002 to 2017.We analyzed the responses of runoff to temperature,precipitation,and seasonally-frozen ground to quantify process characteristics and driving factors.The results show that annual runoff was 88.5 mm accounting for 25.6%of rainfall,mainly concentrated in May to October,with baseflow of 36.44 mm.Peak runoff occurred in June,August,and September,i.e.,accounting for spring and summer floods.Runoff during the spring flood was produced by a mix of rainfall,melting snow,and melting seasonally-frozen ground,and had a significant correlation with air temperature.Runoff was mainly due to precipitation accumulation during the summer flood.Air temperature,average soil temperature at 0−50 cm depth,and frozen soil depth variable explained 59.60%of the variation of runoff in the thawing period,while precipitation variable explained 21.9%.Thawing-period runoff and soil temperature had a>0.6 correlation coefficient(P<0.05).In the rainfall-period,runoff was also affected by temperature,soil moisture,and precipitation,which explained 33.6%,34.1%and 18.1%,respectively.Our results show that increasing temperature and precipitation will have an irreversible impact on the hydrological regime in mountainous basins where seasonally-frozen ground is widely distributed.
文摘duniperus sabina Linnaeus, an evergreen shrub with prostrate life form, can effectively prevent sand moving and is an important tree species for reforestation in semiarid areas of China. It has laterally distributed adventitious roots and a deeply distributed main root system. To detect water movement between the main root system and adventitious roots, we adopted heat pulse sensors using the Heat Ratio Method, a high precision method for measuring low sap flow rates. Two sensors were implanted in each individual in the stem between the main root system and adventitious roots, and another two in lateral stems distal to all the roots. Positive sap flows during nighttime, even under saturated air moisture conditions, were detected only between the main root system and adventitious roots under drought conditions, and the rate of flow increased as drought progressed and decreased or disappeared after rain events. The results demonstrated the existence of water movement from the main root system to adventitious roots, and combined with the high contribution of nighttime sap flow to transpiration (11%-16%) the results indicate that it also involves the process of hydraulic lift, a water movement from moist subsoil to dry surface soils. Integrated water use strategy between the main root system and adventitious roots via the process of hydraulic lift of soil water maximizes water acquisition efficiency from both subsoil water and water from rain pulses on the soil surface; this increases survivability in the water-limited environment of semiarid areas.
文摘The arid and semiarid land in China covers a vast area, about 3.5 million km^2(not coun-ting the Tibet Plateau),where natural resources are very aboundant. In this area, the totalsolar radiation is as high as 140--160 kilocalorie / cm^2. a. There are about 167 million ha ofvarious grasslands, accounting for nearly 60% of the national grassland area.
基金supported financially by the Natural Science Foundation of China(Grant Nos.41971001,41730637 and 41501002]supported by the Open Foundation of Research institute of Qilian Mountains
文摘The combination of different topographic and climatic conditions results in varied precipitation-runoff relations, which in turn influences hillslope erosion, sediment transport and bedrock incision across mountainous landscapes. The runoff coefficient is a suitable tool to represent precipitation-runoff relations, but the spatial distribution of the runoff coefficient across tectonically active mountains in semi-arid environments has received little attention because of limited data availability. We calculated annual runoff coefficients over 22 years for 26 drainage basins across the semi-arid Qilian Mountains based on:(i) annual discharge records;and(ii) the China Meteorological Forcing Dataset to enhance our understanding of the precipitation-runoff processes. The mean annual runoff coefficients show no obvious spatial trends. When compared to potential controlling factors, mean annual runoff coefficients are highly correlated with mean slope rather than any climatic characteristics(e.g., mean annualprecipitation and Normalized Difference Vegetation Index). The slope-dependent runoff coefficient could theoretically have enhanced the topographic control on erosion rates and dampen the influence of precipitation. The enhanced discharge for drainage basins with less precipitation but steep topography in the western Qilian Mountains will enable fluvial incision to keep pace with ongoing uplift caused by the northward growth of the Qilian Mountains. The geomorphic implications are that tectonic rather than climatic factors are more significant for long-term landscape evolution in arid and semi-arid contexts.