The CeO2 modified SrTiO3 ceramics were prepared by conventional ceramic process. The SrTiO3 matrix and CeO2 additive were combined in following system:SrTiO3 +x(CeO2·TiO2), where x is the weight percent , of whic...The CeO2 modified SrTiO3 ceramics were prepared by conventional ceramic process. The SrTiO3 matrix and CeO2 additive were combined in following system:SrTiO3 +x(CeO2·TiO2), where x is the weight percent , of which x (wt%)=2,5, 10, 15, 20,25, and 30. The samples were sintered at 1400℃ for an hour in air. The Ce element in SrTiO3 ceramics is used as an impurity donor. The scanning electron microscopic (SEM) analysis and X-ray diffractive examination of SrTiO3 ceramics containing CeO2 indicated that there exists a Ce2O3 secondary phase (viz. glass phase) and it had solid solution solubility for impurities which decrease the semiconductive property of SrTiO3 ceramics , and weaken the oxidation of the surface of grain and thus increase the conductivity of the grains. The semiconducting ceramics process lightly distorted cubic structure at room temperature. This paper mainly gives a study of the conductivity of CeO2 modified SrTiO3 ceramics.展开更多
The positive temperature coefficient resistance ( PTCR) barium titanate ceramic samples have been prepared by the standard solid-state reaction method, and the ceramic samples have been treated by depositing copper fi...The positive temperature coefficient resistance ( PTCR) barium titanate ceramic samples have been prepared by the standard solid-state reaction method, and the ceramic samples have been treated by depositing copper films with magnetron sputtering method. The metallic copper films deposited on the ceramic substrates have been mixed at room temperature with argon ions in energy of 400 keV. Ion beam mixing induced modification of PTCR behavior of the ceramics was studied by using the ac complex impedance method and the resistance vs. temperature measurements . The results showed that room temperature resistance dramatically decreased and Curie point shifted toward higher temperature side for the ion beam mixed samples.展开更多
The constitution and firing-technology of Ni paste were experimentally investigated. The experimental resalts show that the contact resistance could be lowered by adding glass powder and Boron powder, respectively use...The constitution and firing-technology of Ni paste were experimentally investigated. The experimental resalts show that the contact resistance could be lowered by adding glass powder and Boron powder, respectively used as adhesive and antioxidant when the content of Ni powder is higher than 65wt% . By firing at 810 ℃ , Ni paste obtained could form a good ohmic contact to PTC ceramics, as shown by SEM iamges. In addition, we compared the electrical properties of PTCR ceramics measured with various electrodes and found that fired- Ni contact is superior to contacts made by fired-Al and sputtered-Ni.展开更多
文摘The CeO2 modified SrTiO3 ceramics were prepared by conventional ceramic process. The SrTiO3 matrix and CeO2 additive were combined in following system:SrTiO3 +x(CeO2·TiO2), where x is the weight percent , of which x (wt%)=2,5, 10, 15, 20,25, and 30. The samples were sintered at 1400℃ for an hour in air. The Ce element in SrTiO3 ceramics is used as an impurity donor. The scanning electron microscopic (SEM) analysis and X-ray diffractive examination of SrTiO3 ceramics containing CeO2 indicated that there exists a Ce2O3 secondary phase (viz. glass phase) and it had solid solution solubility for impurities which decrease the semiconductive property of SrTiO3 ceramics , and weaken the oxidation of the surface of grain and thus increase the conductivity of the grains. The semiconducting ceramics process lightly distorted cubic structure at room temperature. This paper mainly gives a study of the conductivity of CeO2 modified SrTiO3 ceramics.
文摘The positive temperature coefficient resistance ( PTCR) barium titanate ceramic samples have been prepared by the standard solid-state reaction method, and the ceramic samples have been treated by depositing copper films with magnetron sputtering method. The metallic copper films deposited on the ceramic substrates have been mixed at room temperature with argon ions in energy of 400 keV. Ion beam mixing induced modification of PTCR behavior of the ceramics was studied by using the ac complex impedance method and the resistance vs. temperature measurements . The results showed that room temperature resistance dramatically decreased and Curie point shifted toward higher temperature side for the ion beam mixed samples.
文摘The constitution and firing-technology of Ni paste were experimentally investigated. The experimental resalts show that the contact resistance could be lowered by adding glass powder and Boron powder, respectively used as adhesive and antioxidant when the content of Ni powder is higher than 65wt% . By firing at 810 ℃ , Ni paste obtained could form a good ohmic contact to PTC ceramics, as shown by SEM iamges. In addition, we compared the electrical properties of PTCR ceramics measured with various electrodes and found that fired- Ni contact is superior to contacts made by fired-Al and sputtered-Ni.