A high characteristic temperature (T0) of 200K from a 1.3μm AlInGaAs/AlInAs single-quantum-well laser diode with the asymmetric waveguide layer structure under CW operation at 20 to 80℃ was obtained,which is the b...A high characteristic temperature (T0) of 200K from a 1.3μm AlInGaAs/AlInAs single-quantum-well laser diode with the asymmetric waveguide layer structure under CW operation at 20 to 80℃ was obtained,which is the best result reported in the laser diodes (LDs) of the same active materials structure and emitting wave- length. AllnGaAs as an active layer,therefore,is very promising for the fabrication of long-wavelength LDs with excellent high-temperature performance. It is found that the asymmetric waveguide layer structure can decrease optical absorption and improve the high-temperature performance and catastrophic optical damage threshold of LDs.展开更多
文摘A high characteristic temperature (T0) of 200K from a 1.3μm AlInGaAs/AlInAs single-quantum-well laser diode with the asymmetric waveguide layer structure under CW operation at 20 to 80℃ was obtained,which is the best result reported in the laser diodes (LDs) of the same active materials structure and emitting wave- length. AllnGaAs as an active layer,therefore,is very promising for the fabrication of long-wavelength LDs with excellent high-temperature performance. It is found that the asymmetric waveguide layer structure can decrease optical absorption and improve the high-temperature performance and catastrophic optical damage threshold of LDs.