期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor 被引量:7
1
作者 Lang-Xi Ou Meng-Yang Liu +2 位作者 Li-Yuan Zhu David Wei Zhang Hong-Liang Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期310-351,共42页
With the rapid development of the Internet of Things,there is a great demand for portable gas sensors.Metal oxide semiconductors(MOS)are one of the most traditional and well-studied gas sensing materials and have been... With the rapid development of the Internet of Things,there is a great demand for portable gas sensors.Metal oxide semiconductors(MOS)are one of the most traditional and well-studied gas sensing materials and have been widely used to prepare various commercial gas sensors.However,it is limited by high operating temperature.The current research works are directed towards fabricating high-performance flexible room-temperature(FRT)gas sensors,which are effective in simplifying the structure of MOS-based sensors,reducing power consumption,and expanding the application of portable devices.This article presents the recent research progress of MOS-based FRT gas sensors in terms of sensing mechanism,performance,flexibility characteristics,and applications.This review comprehensively summarizes and discusses five types of MOS-based FRT gas sensors,including pristine MOS,noble metal nanoparticles modified MOS,organic polymers modified MOS,carbon-based materials(carbon nanotubes and graphene derivatives)modified MOS,and two-dimensional transition metal dichalcogenides materials modified MOS.The effect of light-illuminated to improve gas sensing performance is further discussed.Furthermore,the applications and future perspectives of FRT gas sensors are also discussed. 展开更多
关键词 Metal oxide semiconductor Flexible gas sensor Room temperature NANOMATERIALS
下载PDF
Atomic layer deposition for nanoscale oxide semiconductor thin film transistors:review and outlook 被引量:5
2
作者 Hye-Mi Kim Dong-Gyu Kim +2 位作者 Yoon-Seo Kim Minseok Kim Jin-Seong Park 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期153-180,共28页
Since the first report of amorphous In–Ga–Zn–O based thin film transistors,interest in oxide semiconductors has grown.They offer high mobility,low off-current,low process temperature,and wide flexibility for compos... Since the first report of amorphous In–Ga–Zn–O based thin film transistors,interest in oxide semiconductors has grown.They offer high mobility,low off-current,low process temperature,and wide flexibility for compositions and processes.Unfortunately,depositing oxide semiconductors using conventional processes like physical vapor deposition leads to problematic issues,especially for high-resolution displays and highly integrated memory devices.Conventional approaches have limited process flexibility and poor conformality on structured surfaces.Atomic layer deposition(ALD)is an advanced technique which can provide conformal,thickness-controlled,and high-quality thin film deposition.Accordingly,studies on ALD based oxide semiconductors have dramatically increased recently.Even so,the relationships between the film properties of ALD-oxide semiconductors and the main variables associated with deposition are still poorly understood,as are many issues related to applications.In this review,to introduce ALD-oxide semiconductors,we provide:(a)a brief summary of the history and importance of ALD-based oxide semiconductors in industry,(b)a discussion of the benefits of ALD for oxide semiconductor deposition(in-situ composition control in vertical distribution/vertical structure engineering/chemical reaction and film properties/insulator and interface engineering),and(c)an explanation of the challenging issues of scaling oxide semiconductors and ALD for industrial applications.This review provides valuable perspectives for researchers who have interest in semiconductor materials and electronic device applications,and the reasons ALD is important to applications of oxide semiconductors. 展开更多
关键词 atomic layer deposition(ALD) oxide semiconductor thin film transistor(TFT)
下载PDF
Photoelectrocatalytic hydrogen peroxide production based on transition‐metal‐oxide semiconductors 被引量:2
3
作者 Haijiao Lu Xianlong Li +2 位作者 Sabiha Akter Monny Zhiliang Wang Lianzhou Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第5期1204-1215,共12页
As a kind of valuable chemicals,hydrogen peroxide(H2O2)has aroused growing attention in many fields.However,H2O2 production via traditional anthraquinone process suffers from challenges of large energy consumption and... As a kind of valuable chemicals,hydrogen peroxide(H2O2)has aroused growing attention in many fields.However,H2O2 production via traditional anthraquinone process suffers from challenges of large energy consumption and heavy carbon footprint.Alternatively,photoelectrocatalytic(PEC)production of H2O2 has shown great promises to make H2O2 a renewable fuel to store solar energy.Transition‐metal‐oxide(TMO)semiconductor based photoelectrocatalysts are among the most promising candidates for PEC H2O2 production.In this work,the fundamentals of H2O2 synthesis through PEC process are briefly introduced,followed by the state‐of‐the‐art of TMO semiconductor based photoelectrocatalysts for PEC production H2O2.Then,the progress on H2O2 fuel cells from on‐site PEC production is presented.Furthermore,the challenges and future perspectives of PEC H2O2 production are discussed.This review aims to provide inspiration for the PEC production of H2O2 as a renewable solar fuel. 展开更多
关键词 Hydrogen peroxide Solar fuel PHOTOELECTROCATALYSIS Transition‐metal‐oxide semiconductor Fuel cell
下载PDF
Structural evolution of low-dimensional metal oxide semiconductors under external stress 被引量:1
4
作者 Peili Zhao Lei Li +9 位作者 Guoxujia Chen Xiaoxi Guan Ying Zhang Weiwei Meng Ligong Zhao Kaixuan Li Renhui Jiang Shuangfeng Jia He Zheng Jianbo Wang 《Journal of Semiconductors》 EI CAS CSCD 2022年第4期60-66,共7页
Metal oxide semiconductors(MOSs) are attractive candidates as functional parts and connections in nanodevices.Upon spatial dimensionality reduction, the ubiquitous strain encountered in physical reality may result in ... Metal oxide semiconductors(MOSs) are attractive candidates as functional parts and connections in nanodevices.Upon spatial dimensionality reduction, the ubiquitous strain encountered in physical reality may result in structural instability and thus degrade the performance of MOS. Hence, the basic insight into the structural evolutions of low-dimensional MOS is a prerequisite for extensive applications, which unfortunately remains largely unexplored. Herein, we review the recent progress regarding the mechanical deformation mechanisms in MOSs, such as CuO and ZnO nanowires(NWs). We report the phase transformation of CuO NWs resulting from oxygen vacancy migration under compressive stress and the tensile strain-induced phase transition in ZnO NWs. Moreover, the influence of electron beam irradiation on interpreting the mechanical behaviors is discussed. 展开更多
关键词 metal oxide semiconductor phase transition STRAIN NANOWIRE in-situ transmission electron microscopy
下载PDF
Effect of NO annealing on charge traps in oxide insulator and transition layer for 4H-SiC metal–oxide–semiconductor devices 被引量:1
5
作者 贾一凡 吕红亮 +10 位作者 钮应喜 李玲 宋庆文 汤晓燕 李诚瞻 赵艳黎 肖莉 王梁永 唐光明 张义门 张玉明 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期484-488,共5页
The effect of nitric oxide(NO) annealing on charge traps in the oxide insulator and transition layer in n-type4H–Si C metal–oxide–semiconductor(MOS) devices has been investigated using the time-dependent bias s... The effect of nitric oxide(NO) annealing on charge traps in the oxide insulator and transition layer in n-type4H–Si C metal–oxide–semiconductor(MOS) devices has been investigated using the time-dependent bias stress(TDBS),capacitance–voltage(C–V),and secondary ion mass spectroscopy(SIMS).It is revealed that two main categories of charge traps,near interface oxide traps(Nniot) and oxide traps(Not),have different responses to the TDBS and C–V characteristics in NO-annealed and Ar-annealed samples.The Nniotare mainly responsible for the hysteresis occurring in the bidirectional C–V characteristics,which are very close to the semiconductor interface and can readily exchange charges with the inner semiconductor.However,Not is mainly responsible for the TDBS induced C–V shifts.Electrons tunneling into the Not are hardly released quickly when suffering TDBS,resulting in the problem of the threshold voltage stability.Compared with the Ar-annealed sample,Nniotcan be significantly suppressed by the NO annealing,but there is little improvement of Not.SIMS results demonstrate that the Nniotare distributed within the transition layer,which correlated with the existence of the excess silicon.During the NO annealing process,the excess Si atoms incorporate into nitrogen in the transition layer,allowing better relaxation of the interface strain and effectively reducing the width of the transition layer and the density of Nniot. 展开更多
关键词 4H–SiC metal–oxidesemiconductor devices NO annealing near interface oxide traps oxide traps
下载PDF
Improved interfacial and electrical properties of GaSb metal oxide semiconductor devices passivated with acidic(NH_4)_2S solution
6
作者 赵连锋 谭桢 +1 位作者 王敬 许军 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期744-747,共4页
Surface passivation with acidic (NH4)2S solution is shown to be effective in improving the interfacial and electrical properties of HfOE/GaSb metal oxide semiconductor devices. Compared with control samples, the sam... Surface passivation with acidic (NH4)2S solution is shown to be effective in improving the interfacial and electrical properties of HfOE/GaSb metal oxide semiconductor devices. Compared with control samples, the samples treated with acidic (NH4)2S solution show great improvements in gate leakage current, frequency dispersion, border trap density, and interface trap density. These improvements are attributed to the enhancing passivation of the substrates, according to analysis from the perspective of chemical mechanism, X-ray photoelectron spectroscopy, and high-resolution cross-sectional transmission electron microscopy. 展开更多
关键词 GASB metal oxide semiconductor sulfur passivation
下载PDF
Investigation of trap states in Al_2O_3 InAlN/GaN metal–oxide–semiconductor high-electron-mobility transistors
7
作者 张鹏 赵胜雷 +4 位作者 薛军帅 祝杰杰 马晓华 张进成 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期503-506,共4页
In this paper the trapping effects in Al2O3/In0.17Al0.83N/GaN MOS-HEMT(here, HEMT stands for high electron mobility transistor) are investigated by frequency-dependent capacitance and conductance analysis. The trap ... In this paper the trapping effects in Al2O3/In0.17Al0.83N/GaN MOS-HEMT(here, HEMT stands for high electron mobility transistor) are investigated by frequency-dependent capacitance and conductance analysis. The trap states are found at both the Al2O3/In AlN and InAlN/GaN interface. Trap states in InAlN/GaN heterostructure are determined to have mixed de-trapping mechanisms, emission, and tunneling. Part of the electrons captured in the trap states are likely to tunnel into the two-dimensional electron gas(2DEG) channel under serious band bending and stronger electric field peak caused by high Al content in the In AlN barrier, which explains the opposite voltage dependence of time constant and relation between the time constant and energy of the trap states. 展开更多
关键词 INALN TRAPPING frequency-dependent conductance metal–oxidesemiconductor high-electronmobility transistors
下载PDF
Heterojunction-engineered carrier transport in elevated-metal metal-oxide thin-film transistors
8
作者 Xiao Li Zhikang Ma +6 位作者 Jinxiong Li Wengao Pan Congwei Liao Shengdong Zhang Zhuo Gao Dong Fu Lei Lu 《Journal of Semiconductors》 EI CAS CSCD 2024年第10期54-59,共6页
This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojun... This study investigates the carrier transport of heterojunction channel in oxide semiconductor thin-film transistor(TFT)using the elevated-metal metal-oxide(EMMO)architecture and indium−zinc oxide(InZnO).The heterojunction band diagram of InZnO bilayer was modified by the cation composition to form the two-dimensional electron gas(2DEG)at the interface quantum well,as verified using a metal−insulator−semiconductor(MIS)device.Although the 2DEG indeed contributes to a higher mobility than the monolayer channel,the competition and cooperation between the gate field and the built-in field strongly affect such mobility-boosting effect,originating from the carrier inelastic collision at the heterojunction interface and the gate field-induced suppression of quantum well.Benefited from the proper energy-band engineering,a high mobility of 84.3 cm2·V^(−1)·s^(−1),a decent threshold voltage(V_(th))of−6.5 V,and a steep subthreshold swing(SS)of 0.29 V/dec were obtained in InZnO-based heterojunction TFT. 展开更多
关键词 oxide semiconductor thin-film transistors two-dimensional electron gas HETEROJUNCTION high mobility
下载PDF
A low-phase-noise and low-power crystal oscillator for RF tuner 被引量:4
9
作者 唐路 王志功 +1 位作者 曾贤文 徐建 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期21-24,共4页
A 37. 5 MHz differential complementary metal oxide semiconductor (CMOS) crystal oscillator with low power and low phase noise for the radio frequency tuner of digital radio broadcasting digital radio mondiale (DRAM... A 37. 5 MHz differential complementary metal oxide semiconductor (CMOS) crystal oscillator with low power and low phase noise for the radio frequency tuner of digital radio broadcasting digital radio mondiale (DRAM) and digital audio broadcasting (DAB) systems is realized and characterized. The conventional cross-coupled n-type metal oxide semiconductor (NMOS) transistors are replaced by p-type metal oxide semiconductor (PMOS) transistors to decrease the phase noise in the core part of the crystal oscillator. A symmetry structure of the current mirror is adopted to increase the stability of direct current. The amplitude detecting circuit made up of a single- stage CMOS operational transconductance amplifier (OTA) and a simple amplitude detector is used to improve the current accuracy of the output signals. The chip is fabricated in a 0. 18- pxn CMOS process, and the total chip size is 0. 35 mm x 0. 3 mm. Under a supply voltage of 1.8 V, the measured power consumption is 3.6 mW including the output buffer for 50 testing loads. The proposed crystal oscillator exhibits a low phase noise of - 134. 7 dBc/Hz at 1-kHz offset from the center frequency of 37. 5 MHz. 展开更多
关键词 complementary metal oxide semiconductor(CMOS) crystal oscillator phase noise power consumption
下载PDF
Investigation of Gate Defects in Ultrathin MOS Structures Using DTRS Technique
10
作者 霍宗亮 杨国勇 +2 位作者 许铭真 谭长华 段小蓉 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2002年第11期1146-1153,共8页
s:A detailed description of relaxation spectroscopy technique under direct tunneling stress is given.A double peak phenomena by applied relaxation spectroscopy on ultra thin (<3nm) gate oxide is found.It suggests ... s:A detailed description of relaxation spectroscopy technique under direct tunneling stress is given.A double peak phenomena by applied relaxation spectroscopy on ultra thin (<3nm) gate oxide is found.It suggests that two kinds of traps exist in the degradation of gate oxide.It is also observed that both the trap density and the generation/capture cross section of oxide trap and interface trap are smaller in ultra thin gate oxide (<3nm) under DT stress than those in the thicker oxide (>4nm) under FN stress,and the centroid of oxide trap is closer to anode interface than in the center of oxide. 展开更多
关键词 TUNNELING metal oxide semiconductor device proportional difference operator
下载PDF
A CMOS high-IF down-conversion mixer for WLAN 802.11a applications
11
作者 张浩 李智群 王志功 《Journal of Southeast University(English Edition)》 EI CAS 2010年第1期11-16,共6页
A low noise, high conversion gain down-conversion mixer for WLAN 802.11a applications, which adopts the high intermediate frequency (IF) topology, is presented. The input radio frequency (RF)band, local oscillator... A low noise, high conversion gain down-conversion mixer for WLAN 802.11a applications, which adopts the high intermediate frequency (IF) topology, is presented. The input radio frequency (RF)band, local oscillator(LO)frequency band and output IF are 5.15 to 5.35, 4.15 to 4.35 and 1 GHz, respectively. Source resistive degeneration technique and pseudo-differential Gilbert topology are used to achieve high linearity, and, current bleeding technique and LC resonant loads are used to acquire a low noise figure. In addition, the mixer adopts a common-source transistor pair cross-stacked with a source follow pair(CSSF)circuit as an output buffer to enhance the mixer's conversion gain but not deteriorate the other performances. The mixer is implemented in 0.18 μm RF CMOS(complementary metal oxide semiconductor transistor)technology and the chip area of the mixer including all bonding pads is 580 μm×1 185 μm. The measured results show that under a 1.8 V supply, the conversion gain is 10.1 dB; the input 1 dB compression point and the input-referred third-order intercept point are-3.5 and 5.3 dBm, respectively; the single side band (SSB)noise figure (NF)is 8.65 dB, and the core current consumption is 3.8 mA. 展开更多
关键词 high intermediate frequency MIXER high linearity WLAN 802.11a BUFFER complementary metal oxide semiconductor transistor(CMOS)
下载PDF
Semiconductor metal oxide compounds based gas sensors: A literature review 被引量:6
12
作者 Sunil Jagannath PATIL Arun Vithal PATIL +5 位作者 Chandrakant Govindrao DIGHAVKAR Kashinath Shravan THAKARE Ratan Yadav BORASE Sachin Jayaram NANDRE Nishad Gopal DESHPANDE Rajendra Ramdas AHIRE 《Frontiers of Materials Science》 SCIE CSCD 2015年第1期14-37,共24页
This paper gives a statistical view about important contributions and advances on semiconductor metal oxide (SMO) compounds based gas sensors developed to detect the air pollutants such as liquefied petroleum gas (... This paper gives a statistical view about important contributions and advances on semiconductor metal oxide (SMO) compounds based gas sensors developed to detect the air pollutants such as liquefied petroleum gas (LPG), H2S, NH3, CO2, acetone, ethanol, other volatile compounds and hazardous gases. Moreover, it is revealed that the alloy/composite made up of SMO gas sensors show better gas response than their counterpart single component gas sensors, i.e., they are found to enhance the 4S characteristics namely speed, sensitivity, selectivity and stability. Improvement of such types of sensors used for detection of various air pollutants, which are reported in last two decades, is highlighted herein. 展开更多
关键词 gas sensor semiconductor metal oxide (SMO) sensitivity air pollutant gas response
原文传递
Cu_2O-based solar cells using oxide semiconductors 被引量:1
13
作者 Tadatsugu Minami Yuki Nishi Toshihiro Miyata 《Journal of Semiconductors》 EI CAS CSCD 2016年第1期38-46,共9页
We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO(AZO)/n-type oxide semiconductor/p-type Cu_2O heterojunction solar cells fabricated using p-type Cu_2O sheets pre... We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO(AZO)/n-type oxide semiconductor/p-type Cu_2O heterojunction solar cells fabricated using p-type Cu_2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu_2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu_2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa_2O_4 thin-film layer. In most of the Cu_2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO–MgO and Ga_2O_3–Al_2O_3systems, higher conversion efficiencies(á/ as well as a high open circuit voltage(Voc/ were obtained by using a relatively small amount of MgO or Al_2O_3, e.g.,(ZnO)0:91–(MgO)0:09 and(Ga_2O_3/0:975–(Al_2O_3/0:025, respectively. When Cu_2O-based heterojunction solar cells were fabricated using Al_2O_3–Ga_2O_3–MgO–ZnO(AGMZO)multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Vocof 0.98 V and an á of 4.82% were obtained. In addition, an enhanced á and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu_2O heterojunction solar cells fabricated using Na-doped Cu_2O(Cu_2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an á of 6.25% and a Vocof 0.84 V were obtained in a Mg F2/AZO/n-(Ga_2O_3–Al_2O_3//p-Cu_2O:Na heterojunction solar cell fabricated using a Cu_2O:Na sheet with a resistivity of approximately 10 cm and a(Ga_(0:975)A_(l0:025)/2O3 thin film with a thickness of approximately 60 nm.In addition, a Vocof 0.96 V and an á of 5.4% were obtained in a Mg F_2/AZO/n-AGMZO/p-Cu_2O:Na heterojunction solar cell. 展开更多
关键词 CU2O n-type oxide semiconductor heterojunction solar cells high efficiency
原文传递
Review of recent progresses on flexible oxide semiconductor thin film transistors based on atomic layer deposition processes 被引量:4
14
作者 Jiazhen Sheng Ki-Lim Han +2 位作者 TaeHyun Hong Wan-Ho Choi Jin-Seong Park 《Journal of Semiconductors》 EI CAS CSCD 2018年第1期105-116,共12页
The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors(TFTs), fabricating with atomic layer deposition(ALD) processes. The ALD process offers accur... The current article is a review of recent progress and major trends in the field of flexible oxide thin film transistors(TFTs), fabricating with atomic layer deposition(ALD) processes. The ALD process offers accurate controlling of film thickness and composition as well as ability of achieving excellent uniformity over large areas at relatively low temperatures. First, an introduction is provided on what is the definition of ALD, the difference among other vacuum deposition techniques, and the brief key factors of ALD on flexible devices. Second, considering functional layers in flexible oxide TFT, the ALD process on polymer substrates may improve device performances such as mobility and stability, adopting as buffer layers over the polymer substrate, gate insulators, and active layers. Third, this review consists of the evaluation methods of flexible oxide TFTs under various mechanical stress conditions. The bending radius and repetition cycles are mostly considering for conventional flexible devices. It summarizes how the device has been degraded/changed under various stress types(directions). The last part of this review suggests a potential of each ALD film, including the releasing stress, the optimization of TFT structure, and the enhancement of device performance. Thus, the functional ALD layers in flexible oxide TFTs offer great possibilities regarding anti-mechanical stress films, along with flexible display and information storage application fields. 展开更多
关键词 atomic layer deposition(ALD) oxide semiconductor thin film transistor flexible device mechanical stress
原文传递
Optoelectronic switching of nanowire-based hybrid organic/oxide/semiconductor field-effect transistors 被引量:1
15
作者 Eunhye Baek Sebastian Pregl +6 位作者 Mehrdad Shaygan Lotta Romhildt Walter M. Weber Thomas Mikolajick DmitryA. Ryndyk Larysa Baraban Gianaurelio Cuniberti 《Nano Research》 SCIE EI CAS CSCD 2015年第4期1229-1240,共12页
A novel photosensitive hybrid field-effect transistor (FET) which consists of a multiple-shell of organic porphyrin film/oxide/silicon nanowires is presented. Due to the oxide shell around the nanowires, photoswitch... A novel photosensitive hybrid field-effect transistor (FET) which consists of a multiple-shell of organic porphyrin film/oxide/silicon nanowires is presented. Due to the oxide shell around the nanowires, photoswitching of the current in the hybrid nanodevices is guided by the electric field effect, induced by charge redistribution within the organic film. This principle is an alternative to a photoinduced electron injection, valid for devices relying on direct junctions between organic molecules and metals or semiconductors. The switching dynamics of the hybrid nanodevices upon violet light illumination is investigated and a strong dependence on the thickness of the porphyrin film wrapping the nanowires is found. Furthermore, the thickness of the organic films is found to be a crucial parameter also for the switching efficiency of the nanowire FET, represented by the ratio of currents under light illumination (ON) and in dark conditions (OFF). We suggest a simple model of porphyrin film charging to explain the optoelectronic behavior of nanowire FETs mediated by organic film/oxide/semiconductor junctions. 展开更多
关键词 hybrid nanoelectronics silicon nanowirefield-effect transistors porphyrin optoelectronic switching organic/oxide/semiconductor junctions
原文传递
Effect of the Si-doped In_(0.49)Ga_(0.51)P barrier layer on the device performance of In_(0.4)Ga_(0.6)As MOSFETs grown on semi-insulating GaAs substrates 被引量:1
16
作者 常虎东 孙兵 +4 位作者 薛百清 刘桂明 赵威 王盛凯 刘洪刚 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期463-466,共4页
In0.4Ga0.6As channel metal-oxide-semiconductor field-effect transistors (MOSFETs) with and without an Si-doped In0.49Ga0.51P barrier layer grown on semi-insulating GaAs substrates have been investigated for the firs... In0.4Ga0.6As channel metal-oxide-semiconductor field-effect transistors (MOSFETs) with and without an Si-doped In0.49Ga0.51P barrier layer grown on semi-insulating GaAs substrates have been investigated for the first time. Compared with the In0.4Ga0.6As MOSFETs without an In0.49Ga0.51P barrier layer, In0.4Ga0.6As MOSFETs with an In0.49Ga0.51P barrier layer show higher drive current, higher transconductance, lower gate leakage current, lower subthreshold swing, and higher effective channel mobility. These In0.4Ga0.6As MOSFETs (gate length 2 μm) with an In0.49Ga0.51P barrier layer exhibit a high drive current of 117 mA/mm, a high transconductance of 71.9 mS/mm, and a maximum effective channel mobility of 1266 cm2/(V·s). 展开更多
关键词 metal–oxidesemiconductor field-effect transistor INGAAS INGAP Al2O3
下载PDF
Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation 被引量:2
17
作者 张鸿 郭红霞 +9 位作者 雷志锋 彭超 张战刚 陈资文 孙常皓 何玉娟 张凤祁 潘霄宇 钟向丽 欧阳晓平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期525-534,共10页
Experiments and simulation studies on 283 MeV I ion induced single event effects of silicon carbide(SiC) metal–oxide–semiconductor field-effect transistors(MOSFETs) were carried out. When the cumulative irradiation ... Experiments and simulation studies on 283 MeV I ion induced single event effects of silicon carbide(SiC) metal–oxide–semiconductor field-effect transistors(MOSFETs) were carried out. When the cumulative irradiation fluence of the SiC MOSFET reached 5×10^(6)ion·cm^(-2), the drain–gate channel current increased under 200 V drain voltage, the drain–gate channel current and the drain–source channel current increased under 350 V drain voltage. The device occurred single event burnout under 800 V drain voltage, resulting in a complete loss of breakdown voltage. Combined with emission microscope, scanning electron microscope and focused ion beam analysis, the device with increased drain–gate channel current and drain–source channel current was found to have drain–gate channel current leakage point and local source metal melt, and the device with single event burnout was found to have local melting of its gate, source, epitaxial layer and substrate. Combining with Monte Carlo simulation and TCAD electrothermal simulation, it was found that the initial area of single event burnout might occur at the source–gate corner or the substrate–epitaxial interface, electric field and current density both affected the lattice temperature peak. The excessive lattice temperature during the irradiation process appeared at the local source contact, which led to the drain–source channel damage. And the excessive electric field appeared in the gate oxide layer, resulting in drain–gate channel damage. 展开更多
关键词 heavy ion silicon carbide metal–oxidesemiconductor field-effect transistors(SiC MOSFET) drain–gate channel drain–source channel single event burnout TCAD simulation
下载PDF
Proton induced radiation effect of SiC MOSFET under different bias 被引量:1
18
作者 张鸿 郭红霞 +11 位作者 雷志锋 彭超 马武英 王迪 孙常皓 张凤祁 张战刚 杨业 吕伟 王忠明 钟向丽 欧阳晓平 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期708-715,共8页
Radiation effects of silicon carbide metal–oxide–semiconductor field-effect transistors(SiC MOSFETs)induced by 20 MeV proton under drain bias(V_(D)=800 V,V_(G)=0 V),gate bias(V_(D)=0 V,V_(G)=10 V),turn-on bias(V_(D)... Radiation effects of silicon carbide metal–oxide–semiconductor field-effect transistors(SiC MOSFETs)induced by 20 MeV proton under drain bias(V_(D)=800 V,V_(G)=0 V),gate bias(V_(D)=0 V,V_(G)=10 V),turn-on bias(V_(D)=0.5 V,V_(G)=4 V)and static bias(V_(D)=0 V,V_(G)=0 V)are investigated.The drain current of SiC MOSFET under turn-on bias increases linearly with the increase of proton fluence during the proton irradiation.When the cumulative proton fluence reaches 2×10^(11)p·cm^(-2),the threshold voltage of SiC MOSFETs with four bias conditions shifts to the left,and the degradation of electrical characteristics of SiC MOSFETs with gate bias is the most serious.In the deep level transient spectrum test,it is found that the defect energy level of SiC MOSFET is mainly the ON2(E_(c)-1.1 eV)defect center,and the defect concentration and defect capture cross section of SiC MOSFET with proton radiation under gate bias increase most.By comparing the degradation of SiC MOSFET under proton cumulative irradiation,equivalent 1 MeV neutron irradiation and gamma irradiation,and combining with the defect change of SiC MOSFET under gamma irradiation and the non-ionizing energy loss induced by equivalent 1 MeV neutron in SiC MOSFET,the degradation of SiC MOSFET induced by proton is mainly caused by ionizing radiation damage.The results of TCAD analysis show that the ionizing radiation damage of SiC MOSFET is affected by the intensity and direction of the electric field in the oxide layer and epitaxial layer. 展开更多
关键词 PROTON silicon carbide metal–oxidesemiconductor field-effect transistor(SiC MOSFET) degradation defect ionization radiation damage
下载PDF
Recovery of PMOSFET NBTI under different conditions 被引量:1
19
作者 曹艳荣 杨毅 +4 位作者 曹成 何文龙 郑雪峰 马晓华 郝跃 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期484-488,共5页
Negative bias temperature instability(NBTI) has become a serious reliability issue, and the interface traps and oxide charges play an important role in the degradation process. In this paper, we study the recovery o... Negative bias temperature instability(NBTI) has become a serious reliability issue, and the interface traps and oxide charges play an important role in the degradation process. In this paper, we study the recovery of NBTI systemically under different conditions in the P-type metal–oxide–semiconductor field effect transistor(PMOSFET), explain the various recovery phenomena, and find the possible processes of the recovery. 展开更多
关键词 negative bias temperature instability(NBTI) P-type metal–oxidesemiconductor field effect transistor RECOVERY
下载PDF
X-ray irradiation-induced degradation in Hf_(0.5)Zr_(0.5)O_(2) fully depleted silicon-on-insulator n-type metal oxide semiconductor field-effect transistors 被引量:1
20
作者 Yu-Dong Li Qing-Zhu Zhang +5 位作者 Fan-Yu Liu Zhao-Hao Zhang Feng-Yuan Zhang Hong-Bin Zhao Bo Li Jiang Yan 《Rare Metals》 SCIE EI CAS CSCD 2021年第11期3299-3307,共9页
The n-type ultrathin fully depleted silicon-on-insulator(FDSOI) metal-oxide-semiconductor field-effect transistors(MOSFETs),with a Hf_(0.5)Zr_(0.5)O_(2) high dielectric permittivity(high-k) dielectric as gate insulato... The n-type ultrathin fully depleted silicon-on-insulator(FDSOI) metal-oxide-semiconductor field-effect transistors(MOSFETs),with a Hf_(0.5)Zr_(0.5)O_(2) high dielectric permittivity(high-k) dielectric as gate insulator,were fabricated.The total ionizing dose effects were investigated,and an X-ray radiation dose up to 1500 krad(Si) was applied for both long-and short-channel devices.The short-channel devices(0.025-0.100 μm) exhibited less irradiation sensitivity compared with the long-channel devices(0.35-16 μm),leading to a 71% reduction in the irradiation-induced drain current growth and a 26% decrease in the shift of the threshold voltage.It was experimentally demonstrated that the OFF mode is the worst case among the three working conditions(OFF,ON and A110) for short-channel devices.Also,the determined effective electron mobility was enhanced by 38% after X-ray irradiation,attributed to the different compensations for charges triggered by radiation between the highk dielectric and buried oxide.By extracting the carrier mobility,gate length modulation,and source/drain(S/D)parasitic resistance,the degradation mechanism on X-ray irradiation was revealed.Finally,the split capacitance-voltage measurements were used to validate the analysis. 展开更多
关键词 Total ionizing dose Fully depleted silicon-on-insulator(FDSOI) Metal–oxidesemiconductor field-effect transistor(MOSFET) HIGH-K Hf_(0.5)Zr_(0.5)O_(2)
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部