A novel Sr2CulnO3S oxysulfide p-type semiconductor photocatalyst has been prepared by solid state reaction method and it exhibits intriguing visible light absorption properties with a bandgap of 2.3 eV. The p-type sem...A novel Sr2CulnO3S oxysulfide p-type semiconductor photocatalyst has been prepared by solid state reaction method and it exhibits intriguing visible light absorption properties with a bandgap of 2.3 eV. The p-type semiconductor character of the synthesized Sr2CuInO3 S was confirmed by Hall efficient measurement and Mott-Schottky plot analysis. First-principles density functional theory calculations (DFT) and electrochem ical measurements were performed to elucidate the electronic structure and the energy band locations. It was found that the as-synthesized Sr2CuInO3S photocatalyst has appreciate conduction and valence band positions for hydrogen and oxygen evolution, respectively. Photocat alytic hydrogen production experiments under a visible light irradiation (A〉420 nm) were carried out by loading different metal and metal-like cocatalysts on Sr2CuInO3S and Rh was found to be the best one among the tested ones.展开更多
Metal‐organic framework(MOF)‐derived nanomaterials have attracted widespread attention,because the excellent features,such as high surface area,porosity and tunable properties are inherited from MOFs.Moreover,the de...Metal‐organic framework(MOF)‐derived nanomaterials have attracted widespread attention,because the excellent features,such as high surface area,porosity and tunable properties are inherited from MOFs.Moreover,the derivatives avoid the poor conductivity and stability of MOFs.MOF‐derived nanomaterials can easily be regulated by a specific selection of metal nodes and organic linkers,resulting in multifunctionality in photocatalysis.MOF derivatives can be used not only as semiconductor photocatalysts,but also as co‐catalysts for photocatalytic hydrogen evolution,CO_(2) reduction,pollutants degradation,etc.This review focuses on the multifunctional applications of MOF derivatives in the field of photocatalysis.The researches in recent years are analyzed and summarized from the aspects of preparation,modification and application of MOF derivatives.At the end of the review,the development and challenges of MOF derivatives applied in photocatalysis in the future are put forward,in order to provide more references for further research in this field and bring new inspiration.展开更多
Semiconductor photocatalysis, as a key part of solar energy utilization, has far-reaching implications for industrial, agricultural, and commercial development. Lack of understanding of the catalyst evolution and the ...Semiconductor photocatalysis, as a key part of solar energy utilization, has far-reaching implications for industrial, agricultural, and commercial development. Lack of understanding of the catalyst evolution and the reaction mechanism is a critical obstacle for designing efficient and stable photocatalysts. This review summarizes the recent progress of in-situ exploring the dynamic behavior of catalyst materials and reaction intermediates. Semiconductor photocatalytic processes and two major classes of in-situ techniques that include microscopic imaging and spectroscopic characterization are presented. Finally, problems and challenges in in-situ characterization are proposed, geared toward developing more advanced in-situ techniques and monitoring more accurate and realistic reaction processes, to guide designing advanced photocatalysts.展开更多
Microplastics are persistent anthropogenic pollutants that have become a global concern due to their widespread distribution and unfamiliar threat to the environment and living organisms. Conventional technologies are...Microplastics are persistent anthropogenic pollutants that have become a global concern due to their widespread distribution and unfamiliar threat to the environment and living organisms. Conventional technologies are unable to fully decompose and mineralize plastic waste. Therefore, there is a need to develop an environmentally friendly, innovative and sustainable photocatalytic process that can destroy these wastes with much less energy and chemical consumption. In photocatalysis, various nanomaterials based on wide energy band gap semiconductors such as TiO2 and ZnO are used for the conversion of plastic contaminants into environmentally friendly compounds. In this work, the removal of plastic fragments by photocatalytic reactions using newly developed photocatalytic composites and the mechanism of photocatalytic degradation of microplastics are systematically investigated. In these degradation processes, sunlight or an artificial light source is used to activate the photocatalyst in the presence of oxygen.展开更多
SrTiO3 is a promising candidate photocatalyst for overall water splitting.Loading suitable cocatalysts,such as NiOx,the mixture of Ni and NiO,remarkably improve the photocatalytic activity.However,spatial locations an...SrTiO3 is a promising candidate photocatalyst for overall water splitting.Loading suitable cocatalysts,such as NiOx,the mixture of Ni and NiO,remarkably improve the photocatalytic activity.However,spatial locations and functions of components in NiOx/SrTiO3 are under debate.Here,using first-principles density functional theory(DFT)calculations,we investigate the initial growth of Nin(n=1–4)and(NiO)n(n=1,2 and 4)clusters on stoichiometric(100)surfaces of SrTiO3,and explore interfacial and electronic structures of composite photocatalysts.It is found that Nin clusters are easier to undergo aggregation on SrO-termination than on TiO2-termination.The adsorption of Nincluster on(100)surfaces elevates the Fermi level towards the conduction band,which may benefit the occurrence of hydrogen evolution reaction.The structural similarity between(NiO)n cluster and surface has an essential effect on the most stable adsorption configuration.For(NiO)n/SrTiO3 systems,the occupied states of(NiO)n cluster well overlap with those of(100)surfaces in the valence band maximum,which is in favor of the separation of photogenerated electrons and holes to SrTiO3 support and(NiO)n cluster,respectively.The detailed DFT analysis provides important insights into the growth of NiOx on surfaces of SrTiO3and presents an explanation on the different models of NiOx/SrTiO3 photocatalyst proposed by experimental groups.Our calculations build a basis for further investigations on the mechanism of photocatalytic water-splitting reaction in NiOx/SrTiO3composite system.展开更多
A series of CdxZn1-xS (x = 0.1-0.9) photocatalysts were prepared by coprecipitation. They could form solid solution semiconductors with hexagonal phase in agreement with pure CdS by characterization of XRD. The photop...A series of CdxZn1-xS (x = 0.1-0.9) photocatalysts were prepared by coprecipitation. They could form solid solution semiconductors with hexagonal phase in agreement with pure CdS by characterization of XRD. The photophysical properties of CdxZn1-xS photocatalysts were measured by UV-Vis diffuse reflectance spectrum and surface photovoltage spectroscopy (SPS). The band gap energy gradually reduced with the increasing of x value in CdxZn1-xS,and when x = 0.7,the Cd0.7Zn0.3S photocatalyst had the strongest sur...展开更多
Nest-like and multilayered-disk-like Bi2WO6 photocatalysts were synthesized through a hydrothermal strategy using thiourea and acetic acid as complexing agents. The nest-like Bi2WO6 showed excellent visible-light-driv...Nest-like and multilayered-disk-like Bi2WO6 photocatalysts were synthesized through a hydrothermal strategy using thiourea and acetic acid as complexing agents. The nest-like Bi2WO6 showed excellent visible-light-driven photocatalytic performance, and it could decompose rhodamine B(RhB) within 100 minutes. This excellent performance resulted from its special microstructure and the relatively large surface area.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.21090341 and 21361140346)the National Basic Research Program(973 Program)of the Ministry of Science and Technology of China(Grant No.2014CB239401)
文摘A novel Sr2CulnO3S oxysulfide p-type semiconductor photocatalyst has been prepared by solid state reaction method and it exhibits intriguing visible light absorption properties with a bandgap of 2.3 eV. The p-type semiconductor character of the synthesized Sr2CuInO3 S was confirmed by Hall efficient measurement and Mott-Schottky plot analysis. First-principles density functional theory calculations (DFT) and electrochem ical measurements were performed to elucidate the electronic structure and the energy band locations. It was found that the as-synthesized Sr2CuInO3S photocatalyst has appreciate conduction and valence band positions for hydrogen and oxygen evolution, respectively. Photocat alytic hydrogen production experiments under a visible light irradiation (A〉420 nm) were carried out by loading different metal and metal-like cocatalysts on Sr2CuInO3S and Rh was found to be the best one among the tested ones.
文摘Metal‐organic framework(MOF)‐derived nanomaterials have attracted widespread attention,because the excellent features,such as high surface area,porosity and tunable properties are inherited from MOFs.Moreover,the derivatives avoid the poor conductivity and stability of MOFs.MOF‐derived nanomaterials can easily be regulated by a specific selection of metal nodes and organic linkers,resulting in multifunctionality in photocatalysis.MOF derivatives can be used not only as semiconductor photocatalysts,but also as co‐catalysts for photocatalytic hydrogen evolution,CO_(2) reduction,pollutants degradation,etc.This review focuses on the multifunctional applications of MOF derivatives in the field of photocatalysis.The researches in recent years are analyzed and summarized from the aspects of preparation,modification and application of MOF derivatives.At the end of the review,the development and challenges of MOF derivatives applied in photocatalysis in the future are put forward,in order to provide more references for further research in this field and bring new inspiration.
基金supported by the National Science Foundation of China (21875137, 51521004, and 51420105009)Innovation Program of Shanghai Municipal Education Commission (Project No. 2019-01-07-00-02-E00069)+1 种基金the 111 Project (Project No. B16032)the fund from Center of Hydrogen Science and Joint Research Center for Clean Energy Materials at Shanghai Jiao Tong University for financial supports。
文摘Semiconductor photocatalysis, as a key part of solar energy utilization, has far-reaching implications for industrial, agricultural, and commercial development. Lack of understanding of the catalyst evolution and the reaction mechanism is a critical obstacle for designing efficient and stable photocatalysts. This review summarizes the recent progress of in-situ exploring the dynamic behavior of catalyst materials and reaction intermediates. Semiconductor photocatalytic processes and two major classes of in-situ techniques that include microscopic imaging and spectroscopic characterization are presented. Finally, problems and challenges in in-situ characterization are proposed, geared toward developing more advanced in-situ techniques and monitoring more accurate and realistic reaction processes, to guide designing advanced photocatalysts.
文摘Microplastics are persistent anthropogenic pollutants that have become a global concern due to their widespread distribution and unfamiliar threat to the environment and living organisms. Conventional technologies are unable to fully decompose and mineralize plastic waste. Therefore, there is a need to develop an environmentally friendly, innovative and sustainable photocatalytic process that can destroy these wastes with much less energy and chemical consumption. In photocatalysis, various nanomaterials based on wide energy band gap semiconductors such as TiO2 and ZnO are used for the conversion of plastic contaminants into environmentally friendly compounds. In this work, the removal of plastic fragments by photocatalytic reactions using newly developed photocatalytic composites and the mechanism of photocatalytic degradation of microplastics are systematically investigated. In these degradation processes, sunlight or an artificial light source is used to activate the photocatalyst in the presence of oxygen.
基金financially supported by the National Natural Science Foundation of China under Grant 21473183
文摘SrTiO3 is a promising candidate photocatalyst for overall water splitting.Loading suitable cocatalysts,such as NiOx,the mixture of Ni and NiO,remarkably improve the photocatalytic activity.However,spatial locations and functions of components in NiOx/SrTiO3 are under debate.Here,using first-principles density functional theory(DFT)calculations,we investigate the initial growth of Nin(n=1–4)and(NiO)n(n=1,2 and 4)clusters on stoichiometric(100)surfaces of SrTiO3,and explore interfacial and electronic structures of composite photocatalysts.It is found that Nin clusters are easier to undergo aggregation on SrO-termination than on TiO2-termination.The adsorption of Nincluster on(100)surfaces elevates the Fermi level towards the conduction band,which may benefit the occurrence of hydrogen evolution reaction.The structural similarity between(NiO)n cluster and surface has an essential effect on the most stable adsorption configuration.For(NiO)n/SrTiO3 systems,the occupied states of(NiO)n cluster well overlap with those of(100)surfaces in the valence band maximum,which is in favor of the separation of photogenerated electrons and holes to SrTiO3 support and(NiO)n cluster,respectively.The detailed DFT analysis provides important insights into the growth of NiOx on surfaces of SrTiO3and presents an explanation on the different models of NiOx/SrTiO3 photocatalyst proposed by experimental groups.Our calculations build a basis for further investigations on the mechanism of photocatalytic water-splitting reaction in NiOx/SrTiO3composite system.
基金the National High-Tech Research and Development Program of China (No. 2007AA03Z337)the Heilongjiang Science Fund for Distinguished Young Scholars (No. JC200615)the Technical Cooperation Project of Harbin with Russia(No.2006AA4BE053).
文摘A series of CdxZn1-xS (x = 0.1-0.9) photocatalysts were prepared by coprecipitation. They could form solid solution semiconductors with hexagonal phase in agreement with pure CdS by characterization of XRD. The photophysical properties of CdxZn1-xS photocatalysts were measured by UV-Vis diffuse reflectance spectrum and surface photovoltage spectroscopy (SPS). The band gap energy gradually reduced with the increasing of x value in CdxZn1-xS,and when x = 0.7,the Cd0.7Zn0.3S photocatalyst had the strongest sur...
基金Funded by the National Natural Science Foundation of China(A3 Foresight Project No.50821140308)
文摘Nest-like and multilayered-disk-like Bi2WO6 photocatalysts were synthesized through a hydrothermal strategy using thiourea and acetic acid as complexing agents. The nest-like Bi2WO6 showed excellent visible-light-driven photocatalytic performance, and it could decompose rhodamine B(RhB) within 100 minutes. This excellent performance resulted from its special microstructure and the relatively large surface area.
基金supported partially by a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) of the Korean government (2021R1A3B1068304)。