Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detecti...Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detection performed using CMOS sensors. X-ray measurements were obtained using a simulated positioner based on a CMOS sensor, while the X-ray energy was modified by changing the voltage, current, and radiation time. A monitoring control unit collected video data of the detected X-rays. The video images were framed and filtered to detect the effective pixel points(radiation spots).The histograms of the images prove there is a linear relationship between the pixel points and X-ray energy. The relationships between the image pixel points, voltage, and current were quantified, and the resultant correlations were observed to obey some physical laws.展开更多
This paper investigates the influences of a semiconductor laser with narrow linewidth on a fibre-optic distributed disturbance sensor based on Mach-Zehnder interferometer. It establishes an effective numerical model t...This paper investigates the influences of a semiconductor laser with narrow linewidth on a fibre-optic distributed disturbance sensor based on Mach-Zehnder interferometer. It establishes an effective numerical model to describe the noises and linewidth of a semiconductor laser, taking into account their correlations. Simulation shows that frequency noise has great influences on location errors and their relationship is numerically investigated. Accordingly, there is need to determine the linewidth of the laser less than a threshold and obtain the least location errors. Furthermore, experiments are performed by a sensor prototype using three semiconductor lasers with different linewidths, respectively, with polarization maintaining optical fibres and couplers to eliminate the polarization induced noises and fading. The agreement of simulation with experimental results means that the proposed numerical model can make a comprehensive description of the noise behaviour of a semiconductor laser. The conclusion is useful for choosing a laser source for fibre-optic distributed disturbance sensor to achieve optimized location accuracy. What is more, the proposed numerical model can be widely used for analysing influences of semiconductor lasers on other sensing, communication and optical signal processing systems.展开更多
We have developed a novel optical fiber ring laser using a semiconductor optical amplifier (SOA) as the gain medium, and taking advantage of polarization anisotropy of its gain. The frequency difference of the bi-dire...We have developed a novel optical fiber ring laser using a semiconductor optical amplifier (SOA) as the gain medium, and taking advantage of polarization anisotropy of its gain. The frequency difference of the bi-directional laser is controlled by birefringence which is introduced in the ring laser cavity. The beat frequency generated by combining two counter-propagating oscillations is proportional to the birefringence, the fiber ring laser of the present study is, therefore, applicable to the fiber sensor. The sensing signal is obtained in a frequency domain with the material which causes the retardation change by a physical phenomenon to be measured. For the application to stress sensing, the present laser was investigated with a photoelastic material.展开更多
Radiation effects on complementary metal-oxide-semiconductor(CMOS) active pixel sensors(APS) induced by proton and γ-ray are presented. The samples are manufactured with the standards of 0.35 μm CMOS technology....Radiation effects on complementary metal-oxide-semiconductor(CMOS) active pixel sensors(APS) induced by proton and γ-ray are presented. The samples are manufactured with the standards of 0.35 μm CMOS technology. Two samples have been irradiated un-biased by 23 MeV protons with fluences of 1.43 × 10^11 protons/cm^2 and 2.14 × 10^11 protons/cm-2,respectively, while another sample has been exposed un-biased to 65 krad(Si) ^60Co γ-ray. The influences of radiation on the dark current, fixed-pattern noise under illumination, quantum efficiency, and conversion gain of the samples are investigated. The dark current, which increases drastically, is obtained by the theory based on thermal generation and the trap induced upon the irradiation. Both γ-ray and proton irradiation increase the non-uniformity of the signal, but the nonuniformity induced by protons is even worse. The degradation mechanisms of CMOS APS image sensors are analyzed,especially for the interaction induced by proton displacement damage and total ion dose(TID) damage.展开更多
The forward voltage of GaAlAs semiconductor diode has been measured in the temperature range 50 K - 300 K and for current values between 10 nA and 450 μA. The forward voltage as a function of temperature is least-squ...The forward voltage of GaAlAs semiconductor diode has been measured in the temperature range 50 K - 300 K and for current values between 10 nA and 450 μA. The forward voltage as a function of temperature is least-squares fitted and the coefficients are given. The 1st and 2nd order least-squares fitting has high temperature root between 400 K and 950 K. The presence of the high temperature root indicates that the fitted polynomials are of similar character. The high temperature root is found to increase for the least squares fitted polynomials corresponding to higher current values.展开更多
A coating scheme was developed for enabling the operation of a GaAs-based Molecular Controlled Semiconductor Resistor (MOCSER) under biological conditions. Usually GaAs is susceptible to etching in an aqueous environm...A coating scheme was developed for enabling the operation of a GaAs-based Molecular Controlled Semiconductor Resistor (MOCSER) under biological conditions. Usually GaAs is susceptible to etching in an aqueous environment. Several methods of protecting the semiconductor based devices were suggested previously. However, even when protected, it is very difficult to ensure the operation of a GaAs-based electronic sensor in aqua solution for long periods. We developed a new depositing scheme of (3-mercaptopropyl)-trimethoxysilane (MPTMS) on GaAs substrate consisting of two separate steps. The first involves chemisorption of a dense primary MPTMS layer on the substrate, whereas in the second, a thin MPTMS polymer layer is deposited on the already adsorbed layer, resulting in a 15 -?29 nm thick coating. We show that applying the new MPTMS deposition procedure to GaAs-based MOCSER devices allows up to 15 hours of continuous electrical measurements and stable performance of the sensing device in harsh biological environment. The new protection allows implementing GaAs technology in bioelectronics, particularly in biosensing.展开更多
Peculiarities of the low-frequency noise spectroscopy of hydrogen gas sensors made on MgFeO4 n-type porous semiconductor covered by the palladium catalytic nanosize particles are investigated. Behavior of the low-freq...Peculiarities of the low-frequency noise spectroscopy of hydrogen gas sensors made on MgFeO4 n-type porous semiconductor covered by the palladium catalytic nanosize particles are investigated. Behavior of the low-frequency noise spectral density and its exponent value from sensitive layer thickness in the frequency range 2 - 300 Hz are analyzed. Sensitivity of the sensor calculated by the noise method is several tenth times higher as compared with the resistive method. It is shown that besides of the well-known applications, noise spectroscopy can be also used for definition of the unknown thickness of gas sensitive layer, for definition of the sensitive layer subsurface role in the formation of the low-frequency noises and for definition of the intensity of trapping-detrapping processes of the gas molecules.展开更多
基金supported by the Plan for Science Innovation Talent of Henan Province(No.154100510007)the Natural and Science Foundation in Henan Province(No.162300410179)the Cultivation Foundation of Henan Normal University National Project(No.2017PL04)
文摘Complementary metal-oxide-semiconductor(CMOS) sensors can convert X-rays into detectable signals; therefore, they are powerful tools in X-ray detection applications. Herein, we explore the physics behind X-ray detection performed using CMOS sensors. X-ray measurements were obtained using a simulated positioner based on a CMOS sensor, while the X-ray energy was modified by changing the voltage, current, and radiation time. A monitoring control unit collected video data of the detected X-rays. The video images were framed and filtered to detect the effective pixel points(radiation spots).The histograms of the images prove there is a linear relationship between the pixel points and X-ray energy. The relationships between the image pixel points, voltage, and current were quantified, and the resultant correlations were observed to obey some physical laws.
文摘This paper investigates the influences of a semiconductor laser with narrow linewidth on a fibre-optic distributed disturbance sensor based on Mach-Zehnder interferometer. It establishes an effective numerical model to describe the noises and linewidth of a semiconductor laser, taking into account their correlations. Simulation shows that frequency noise has great influences on location errors and their relationship is numerically investigated. Accordingly, there is need to determine the linewidth of the laser less than a threshold and obtain the least location errors. Furthermore, experiments are performed by a sensor prototype using three semiconductor lasers with different linewidths, respectively, with polarization maintaining optical fibres and couplers to eliminate the polarization induced noises and fading. The agreement of simulation with experimental results means that the proposed numerical model can make a comprehensive description of the noise behaviour of a semiconductor laser. The conclusion is useful for choosing a laser source for fibre-optic distributed disturbance sensor to achieve optimized location accuracy. What is more, the proposed numerical model can be widely used for analysing influences of semiconductor lasers on other sensing, communication and optical signal processing systems.
文摘We have developed a novel optical fiber ring laser using a semiconductor optical amplifier (SOA) as the gain medium, and taking advantage of polarization anisotropy of its gain. The frequency difference of the bi-directional laser is controlled by birefringence which is introduced in the ring laser cavity. The beat frequency generated by combining two counter-propagating oscillations is proportional to the birefringence, the fiber ring laser of the present study is, therefore, applicable to the fiber sensor. The sensing signal is obtained in a frequency domain with the material which causes the retardation change by a physical phenomenon to be measured. For the application to stress sensing, the present laser was investigated with a photoelastic material.
基金Project supported the National Natural Science Foundation of China(Grant No.11675259)the West Light Foundation of the Chinese Academy of Sciences(Grant Nos.XBBS201316,2016-QNXZ-B-2,and 2016-QNXZ-B-8)Young Talent Training Project of Science and Technology,Xinjiang,China(Grant No.qn2015yx035)
文摘Radiation effects on complementary metal-oxide-semiconductor(CMOS) active pixel sensors(APS) induced by proton and γ-ray are presented. The samples are manufactured with the standards of 0.35 μm CMOS technology. Two samples have been irradiated un-biased by 23 MeV protons with fluences of 1.43 × 10^11 protons/cm^2 and 2.14 × 10^11 protons/cm-2,respectively, while another sample has been exposed un-biased to 65 krad(Si) ^60Co γ-ray. The influences of radiation on the dark current, fixed-pattern noise under illumination, quantum efficiency, and conversion gain of the samples are investigated. The dark current, which increases drastically, is obtained by the theory based on thermal generation and the trap induced upon the irradiation. Both γ-ray and proton irradiation increase the non-uniformity of the signal, but the nonuniformity induced by protons is even worse. The degradation mechanisms of CMOS APS image sensors are analyzed,especially for the interaction induced by proton displacement damage and total ion dose(TID) damage.
文摘The forward voltage of GaAlAs semiconductor diode has been measured in the temperature range 50 K - 300 K and for current values between 10 nA and 450 μA. The forward voltage as a function of temperature is least-squares fitted and the coefficients are given. The 1st and 2nd order least-squares fitting has high temperature root between 400 K and 950 K. The presence of the high temperature root indicates that the fitted polynomials are of similar character. The high temperature root is found to increase for the least squares fitted polynomials corresponding to higher current values.
文摘A coating scheme was developed for enabling the operation of a GaAs-based Molecular Controlled Semiconductor Resistor (MOCSER) under biological conditions. Usually GaAs is susceptible to etching in an aqueous environment. Several methods of protecting the semiconductor based devices were suggested previously. However, even when protected, it is very difficult to ensure the operation of a GaAs-based electronic sensor in aqua solution for long periods. We developed a new depositing scheme of (3-mercaptopropyl)-trimethoxysilane (MPTMS) on GaAs substrate consisting of two separate steps. The first involves chemisorption of a dense primary MPTMS layer on the substrate, whereas in the second, a thin MPTMS polymer layer is deposited on the already adsorbed layer, resulting in a 15 -?29 nm thick coating. We show that applying the new MPTMS deposition procedure to GaAs-based MOCSER devices allows up to 15 hours of continuous electrical measurements and stable performance of the sensing device in harsh biological environment. The new protection allows implementing GaAs technology in bioelectronics, particularly in biosensing.
文摘Peculiarities of the low-frequency noise spectroscopy of hydrogen gas sensors made on MgFeO4 n-type porous semiconductor covered by the palladium catalytic nanosize particles are investigated. Behavior of the low-frequency noise spectral density and its exponent value from sensitive layer thickness in the frequency range 2 - 300 Hz are analyzed. Sensitivity of the sensor calculated by the noise method is several tenth times higher as compared with the resistive method. It is shown that besides of the well-known applications, noise spectroscopy can be also used for definition of the unknown thickness of gas sensitive layer, for definition of the sensitive layer subsurface role in the formation of the low-frequency noises and for definition of the intensity of trapping-detrapping processes of the gas molecules.