Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and su...Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and sufficient conditions for the existence of and the expressions for the msc solutions and the ssd solutions are obtained for the system.展开更多
In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to...In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to its growth term increasing linearly. Some new analysis tools were developed which can be used to deal with complexity "analysis of the algorithms which use analogous strategy in [5] to design the search directions for the Newton system. The complexity bounds for the algorithms with large- and small-update methodswere obtained, namely,O(qn^(p+q/q(P+1)log n/ε and O(q^2√n)log n/ε,respectlvely.展开更多
Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with si...Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.展开更多
A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main proper...A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.展开更多
Let A∈C<sup>m×n</sup>,set eigenvalues of matrix A with |λ<sub>1</sub> (A)|≥|λ<sub>2</sub>(A)|≥…≥|λ<sub>n</sub>(A)|,write A≥0 if A is a positive semid...Let A∈C<sup>m×n</sup>,set eigenvalues of matrix A with |λ<sub>1</sub> (A)|≥|λ<sub>2</sub>(A)|≥…≥|λ<sub>n</sub>(A)|,write A≥0 if A is a positive semidefinite Hermitian matrix, and denote∧<sub>k</sub> (A)=diag (λ<sub>1</sub>(A),…,λ<sub>k</sub>(A)),∧<sub>(</sub>(n-k).(A)=diag (λ<sub>k+1</sub>(A),…,λ<sub>n</sub>(A))for any k=1, 2,...,n if A≥0. Denote all n order unitary matrices by U<sup>n×n</sup>.Problem of equalities to hold in eigenvalue inequalities for products of matrices展开更多
In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In ad...In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In addition, a criterion for a matrix to be generalized bipositive semidefinite was determined.展开更多
Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWL...Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWLS) estimator is presented. Due to the nonconvex nature of the CWLS problem, it is difficult to obtain its globally optimal solution. However, according to the semidefinite relaxation, the CWLS problem can be relaxed as a convex semidefinite programming problem (SDP), which can be solved by using modern convex optimization algorithms. Moreover, this relaxation can be proved to be tight, i.e., the SDP solves the relaxed CWLS problem, and this hence guarantees the good per- formance of the proposed method. Furthermore, this method is extended to solve the localization problem with sensor position errors. Simulation results corroborate the theoretical results and the good performance of the proposed method.展开更多
In this paper, we discuss the nonemptyness and boundedness of the solution set for P*-semidefinite complementarity problem by using the concept of exceptional family of elements for complementarity problems over the c...In this paper, we discuss the nonemptyness and boundedness of the solution set for P*-semidefinite complementarity problem by using the concept of exceptional family of elements for complementarity problems over the cone of semidefinite matrices, and obtain a main result that if the corresponding problem has a strict feasible point, then its solution set is nonemptyness and boundedness.展开更多
A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the...A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments.展开更多
Efficient solvers for optimization problems are based on linear and semidefinite relaxations that use floating point arithmetic. However, due to the rounding errors, relaxation thus may overestimate, or worst, underes...Efficient solvers for optimization problems are based on linear and semidefinite relaxations that use floating point arithmetic. However, due to the rounding errors, relaxation thus may overestimate, or worst, underestimate the very global optima. The purpose of this article is to introduce an efficient and safe procedure to rigorously bound the global optima of semidefinite program. This work shows how, using interval arithmetic, rigorous error bounds for the optimal value can be computed by carefully post processing the output of a semidefinite programming solver. A lower bound is computed on a semidefinite relaxation of the constraint system and the objective function. Numerical results are presented using the SDPA (SemiDefinite Programming Algorithm), solver to compute the solution of semidefinite programs. This rigorous bound is injected in a branch and bound algorithm to solve the optimisation problem.展开更多
Main resultsTheorem 1 Let A be symmetric positive semidefinite.Let (?) be a diagonally compen-sated reduced matrix of A and Let (?)=σI+(?)(σ】0) be a modiffication(Stieltjes) matrixof (?).Let the splitting (?)=M-(?)...Main resultsTheorem 1 Let A be symmetric positive semidefinite.Let (?) be a diagonally compen-sated reduced matrix of A and Let (?)=σI+(?)(σ】0) be a modiffication(Stieltjes) matrixof (?).Let the splitting (?)=M-(?) be regular and M=F-G be weak regular,where M andF are symmetric positive definite matrices.Then the resulting two-stage method corre-sponding to the diagonally compensated reduced splitting A=M-N and inner splitting M=F-G is convergent for any number μ≥1 of inner iterations.Furthermore,the展开更多
In this paper,an equivalency condition of nonsingularity in nonlinear semidefinite programming,which can be viewed as a generalization of the equivalency condition of nonsingularity for linearsemidefinite programming,...In this paper,an equivalency condition of nonsingularity in nonlinear semidefinite programming,which can be viewed as a generalization of the equivalency condition of nonsingularity for linearsemidefinite programming,is established under certain conditions of convexity.展开更多
In this paper we present a filter-successive linearization method with trust region for solutions of nonlinear semidefinite programming. Such a method is based on the concept of filter for nonlinear programming introd...In this paper we present a filter-successive linearization method with trust region for solutions of nonlinear semidefinite programming. Such a method is based on the concept of filter for nonlinear programming introduced by Fletcher and Leyffer in 2002. We describe the new algorithm and prove its global convergence under weaker assumptions. Some numerical results are reported and show that the new method is potentially efficient.展开更多
Least-squares solution of AXB = D with respect to symmetric positive semidefinite matrix X is considered. By making use of the generalized singular value decomposition, we derive general analytic formulas, and present...Least-squares solution of AXB = D with respect to symmetric positive semidefinite matrix X is considered. By making use of the generalized singular value decomposition, we derive general analytic formulas, and present necessary and sufficient conditions for guaranteeing the existence of the solution. By applying MATLAB 5.2, we give some numerical examples to show the feasibility and accuracy of this construction technique in the finite precision arithmetic.展开更多
Numerical simulation of two-phase (oil and water) miscible flow in porousmedia is the mathematical foundation in energy problems. For a two-dimensional posi-tive problem, Douglas put forward the well-known characteris...Numerical simulation of two-phase (oil and water) miscible flow in porousmedia is the mathematical foundation in energy problems. For a two-dimensional posi-tive problem, Douglas put forward the well-known characteristic finite difference method.However, for numerical analysis there exist difficulties. They assumed that the problem isperiodic and the diffusion matrix of the concentration equation was positive definite. Butin many practical situations the diffusion matrixes are only positive semidefinite. In thispaper, we put forward a kind of characteristic finite difference schemes and obtain optimalorder estimates in l2 norm for the error in the approximation assumptions.展开更多
In this study, a new filter algorithm is presented for solving the nonlinear semidefinite programming. This algorithm is inspired by the classical sequential quadratic programming method. Unlike the traditional filter...In this study, a new filter algorithm is presented for solving the nonlinear semidefinite programming. This algorithm is inspired by the classical sequential quadratic programming method. Unlike the traditional filter methods, the sufficient descent is ensured by changing the step size instead of the trust region radius. Under some suitable conditions, the global convergence is obtained. In the end, some numerical experiments are given to show that the algorithm is effective.展开更多
We study two instances of polynomial optimization problem over a single sphere. The first problem is to compute the best rank-1 tensor approximation. We show the equivalence between two recent semidefinite relaxations...We study two instances of polynomial optimization problem over a single sphere. The first problem is to compute the best rank-1 tensor approximation. We show the equivalence between two recent semidefinite relaxations methods. The other one arises from Bose-Einstein condensates(BEC), whose objective function is a summation of a probably nonconvex quadratic function and a quartic term. These two polynomial optimization problems are closely connected since the BEC problem can be viewed as a structured fourth-order best rank-1 tensor approximation. We show that the BEC problem is NP-hard and propose a semidefinite relaxation with both deterministic and randomized rounding procedures. Explicit approximation ratios for these rounding procedures are presented. The performance of these semidefinite relaxations are illustrated on a few preliminary numerical experiments.展开更多
This paper is mainly concerned with solving the following two problems: Problem Ⅰ. Given X ∈ Rn×m, B . Rm×m. Find A ∈ Pn such thatwhereProblem Ⅱ. Given A ∈Rn×n. Find A ∈ SE such thatwhere F is Fro...This paper is mainly concerned with solving the following two problems: Problem Ⅰ. Given X ∈ Rn×m, B . Rm×m. Find A ∈ Pn such thatwhereProblem Ⅱ. Given A ∈Rn×n. Find A ∈ SE such thatwhere F is Frobenius norm, and SE denotes the solution set of Problem I.The general solution of Problem I has been given. It is proved that there exists a unique solution for Problem II. The expression of this solution for corresponding Problem II for some special case will be derived.展开更多
We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to sev...We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to several other interesting properties in symmetric tensor spaces.We then consider the positive semidefiniteness of linear operators which deduces the convexity of the Frobenius norm function of a symmetric tensor.Furthermore,we characterize the symmetric positive semidefinite tensor(SDT)cone by employing the properties of linear operators,design some face structures of its dual cone,and analyze its relationship to many other tensor cones.In particular,we show that the cone is self-dual if and only if the polynomial is quadratic,give specific characterizations of tensors that are in the primal cone but not in the dual for higher order cases,and develop a complete relationship map among the tensor cones appeared in the literature.展开更多
In this paper, an approximate augmented Lagrangian function for nonlinear semidefinite programs is introduced. Some basic properties of the approximate augmented Lagrange function such as monotonicity and convexity ar...In this paper, an approximate augmented Lagrangian function for nonlinear semidefinite programs is introduced. Some basic properties of the approximate augmented Lagrange function such as monotonicity and convexity are discussed. Necessary and sufficient conditions for approximate strong duality results are derived. Conditions for an approximate exact penalty representation in the framework of augmented Lagrangian are given. Under certain conditions, it is shown that any limit point of a sequence of stationary points of approximate augmented Lagrangian problems is a KKT point of the original semidefinite program and that a sequence of optimal solutions to augmented Lagrangian problems converges to a solution of the original semidefinite program.展开更多
文摘Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and sufficient conditions for the existence of and the expressions for the msc solutions and the ssd solutions are obtained for the system.
文摘In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to its growth term increasing linearly. Some new analysis tools were developed which can be used to deal with complexity "analysis of the algorithms which use analogous strategy in [5] to design the search directions for the Newton system. The complexity bounds for the algorithms with large- and small-update methodswere obtained, namely,O(qn^(p+q/q(P+1)log n/ε and O(q^2√n)log n/ε,respectlvely.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10117733), the Shanghai Leading Academic Discipline Project (Grant No.J50101), and the Foundation of Scientific Research for Selecting and Cultivating Young Excellent University Teachers in Shanghai (Grant No.06XPYQ52)
文摘Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.
基金This work was supported by the National Natural Science Foundation of China (10201001, 70471008)
文摘A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.
基金Supported partly by National Natural Science Foundation of China
文摘Let A∈C<sup>m×n</sup>,set eigenvalues of matrix A with |λ<sub>1</sub> (A)|≥|λ<sub>2</sub>(A)|≥…≥|λ<sub>n</sub>(A)|,write A≥0 if A is a positive semidefinite Hermitian matrix, and denote∧<sub>k</sub> (A)=diag (λ<sub>1</sub>(A),…,λ<sub>k</sub>(A)),∧<sub>(</sub>(n-k).(A)=diag (λ<sub>k+1</sub>(A),…,λ<sub>n</sub>(A))for any k=1, 2,...,n if A≥0. Denote all n order unitary matrices by U<sup>n×n</sup>.Problem of equalities to hold in eigenvalue inequalities for products of matrices
基金Project supported by the National Natural Science Foundation of China (Grant No.60672160)
文摘In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In addition, a criterion for a matrix to be generalized bipositive semidefinite was determined.
基金supported by the National Natural Science Foundation of China(61201282)the Science and Technology on Communication Information Security Control Laboratory Foundation(9140C130304120C13064)
文摘Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWLS) estimator is presented. Due to the nonconvex nature of the CWLS problem, it is difficult to obtain its globally optimal solution. However, according to the semidefinite relaxation, the CWLS problem can be relaxed as a convex semidefinite programming problem (SDP), which can be solved by using modern convex optimization algorithms. Moreover, this relaxation can be proved to be tight, i.e., the SDP solves the relaxed CWLS problem, and this hence guarantees the good per- formance of the proposed method. Furthermore, this method is extended to solve the localization problem with sensor position errors. Simulation results corroborate the theoretical results and the good performance of the proposed method.
文摘In this paper, we discuss the nonemptyness and boundedness of the solution set for P*-semidefinite complementarity problem by using the concept of exceptional family of elements for complementarity problems over the cone of semidefinite matrices, and obtain a main result that if the corresponding problem has a strict feasible point, then its solution set is nonemptyness and boundedness.
基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-38)Shanghai Sailing Program,China(No.22YF1400900)。
文摘A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments.
文摘Efficient solvers for optimization problems are based on linear and semidefinite relaxations that use floating point arithmetic. However, due to the rounding errors, relaxation thus may overestimate, or worst, underestimate the very global optima. The purpose of this article is to introduce an efficient and safe procedure to rigorously bound the global optima of semidefinite program. This work shows how, using interval arithmetic, rigorous error bounds for the optimal value can be computed by carefully post processing the output of a semidefinite programming solver. A lower bound is computed on a semidefinite relaxation of the constraint system and the objective function. Numerical results are presented using the SDPA (SemiDefinite Programming Algorithm), solver to compute the solution of semidefinite programs. This rigorous bound is injected in a branch and bound algorithm to solve the optimisation problem.
文摘Main resultsTheorem 1 Let A be symmetric positive semidefinite.Let (?) be a diagonally compen-sated reduced matrix of A and Let (?)=σI+(?)(σ】0) be a modiffication(Stieltjes) matrixof (?).Let the splitting (?)=M-(?) be regular and M=F-G be weak regular,where M andF are symmetric positive definite matrices.Then the resulting two-stage method corre-sponding to the diagonally compensated reduced splitting A=M-N and inner splitting M=F-G is convergent for any number μ≥1 of inner iterations.Furthermore,the
基金supported by the National Natural Science Foundation of China under Grant No. 10871098the Natural Science Fund of Jiangsu Province under Grant No. BK2009397the Innovation Fund of Youth of Fujian Province under Grant No. 2009J05003 and CNPq Brazil
文摘In this paper,an equivalency condition of nonsingularity in nonlinear semidefinite programming,which can be viewed as a generalization of the equivalency condition of nonsingularity for linearsemidefinite programming,is established under certain conditions of convexity.
基金supported by National Natural Science Foundation of China (Grant No. 10871098)Science Foundation of Jiangsu Province (Grant No. BK2006214)
文摘In this paper we present a filter-successive linearization method with trust region for solutions of nonlinear semidefinite programming. Such a method is based on the concept of filter for nonlinear programming introduced by Fletcher and Leyffer in 2002. We describe the new algorithm and prove its global convergence under weaker assumptions. Some numerical results are reported and show that the new method is potentially efficient.
基金Subsidized by The Special Funds For Major State Basic Research Project G1999032803.
文摘Least-squares solution of AXB = D with respect to symmetric positive semidefinite matrix X is considered. By making use of the generalized singular value decomposition, we derive general analytic formulas, and present necessary and sufficient conditions for guaranteeing the existence of the solution. By applying MATLAB 5.2, we give some numerical examples to show the feasibility and accuracy of this construction technique in the finite precision arithmetic.
文摘Numerical simulation of two-phase (oil and water) miscible flow in porousmedia is the mathematical foundation in energy problems. For a two-dimensional posi-tive problem, Douglas put forward the well-known characteristic finite difference method.However, for numerical analysis there exist difficulties. They assumed that the problem isperiodic and the diffusion matrix of the concentration equation was positive definite. Butin many practical situations the diffusion matrixes are only positive semidefinite. In thispaper, we put forward a kind of characteristic finite difference schemes and obtain optimalorder estimates in l2 norm for the error in the approximation assumptions.
基金Supported by National Natural Science Foundation of China(Grant Nos.11061011 and 11361018)Guangxi Fund for Distinguished Young Scholars(Grant No.2012GXNSFFA060003)+2 种基金the Guangxi Fund(Grant No.2013GXNSFDA019002)the first author would like to thank the Project of Guangxi Innovation Team"Optimization method and its engineering application"(Grant No.2014GXNSFFA118001)supported by Guangxi Experiment Center of Information Science and Guangxi Key Laboratory of Automatic Detecting Technology and Instruments
文摘In this study, a new filter algorithm is presented for solving the nonlinear semidefinite programming. This algorithm is inspired by the classical sequential quadratic programming method. Unlike the traditional filter methods, the sufficient descent is ensured by changing the step size instead of the trust region radius. Under some suitable conditions, the global convergence is obtained. In the end, some numerical experiments are given to show that the algorithm is effective.
基金supported by National Natural Science Foundation of China (Grant Nos. 11401364, 11322109, 11331012, 11471325 and 11461161005)the National High Technology Research and Development Program of China (863 Program) (Grant No. 2013AA122902)+1 种基金the National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of SciencesNational Basic Research Program of China (973 Program) (Grant No. 2015CB856002)
文摘We study two instances of polynomial optimization problem over a single sphere. The first problem is to compute the best rank-1 tensor approximation. We show the equivalence between two recent semidefinite relaxations methods. The other one arises from Bose-Einstein condensates(BEC), whose objective function is a summation of a probably nonconvex quadratic function and a quartic term. These two polynomial optimization problems are closely connected since the BEC problem can be viewed as a structured fourth-order best rank-1 tensor approximation. We show that the BEC problem is NP-hard and propose a semidefinite relaxation with both deterministic and randomized rounding procedures. Explicit approximation ratios for these rounding procedures are presented. The performance of these semidefinite relaxations are illustrated on a few preliminary numerical experiments.
基金Supported by the National Nature Science Fundation of China.
文摘This paper is mainly concerned with solving the following two problems: Problem Ⅰ. Given X ∈ Rn×m, B . Rm×m. Find A ∈ Pn such thatwhereProblem Ⅱ. Given A ∈Rn×n. Find A ∈ SE such thatwhere F is Frobenius norm, and SE denotes the solution set of Problem I.The general solution of Problem I has been given. It is proved that there exists a unique solution for Problem II. The expression of this solution for corresponding Problem II for some special case will be derived.
基金supported by National Natural Science Foundation of China(Grant No.11301022)the State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University(Grant Nos.RCS2014ZT20 and RCS2014ZZ001)+1 种基金Beijing Natural Science Foundation(Grant No.9144031)the Hong Kong Research Grant Council(Grant Nos.Poly U 501909,502510,502111 and 501212)
文摘We study symmetric tensor spaces and cones arising from polynomial optimization and physical sciences.We prove a decomposition invariance theorem for linear operators over the symmetric tensor space,which leads to several other interesting properties in symmetric tensor spaces.We then consider the positive semidefiniteness of linear operators which deduces the convexity of the Frobenius norm function of a symmetric tensor.Furthermore,we characterize the symmetric positive semidefinite tensor(SDT)cone by employing the properties of linear operators,design some face structures of its dual cone,and analyze its relationship to many other tensor cones.In particular,we show that the cone is self-dual if and only if the polynomial is quadratic,give specific characterizations of tensors that are in the primal cone but not in the dual for higher order cases,and develop a complete relationship map among the tensor cones appeared in the literature.
基金This work is partially supported by the Postdoctoral Fellowship of The Hong Kong Polytechnic Universitythe Research Grants Council of Hong Kong(PolyU B-Q890)
文摘In this paper, an approximate augmented Lagrangian function for nonlinear semidefinite programs is introduced. Some basic properties of the approximate augmented Lagrange function such as monotonicity and convexity are discussed. Necessary and sufficient conditions for approximate strong duality results are derived. Conditions for an approximate exact penalty representation in the framework of augmented Lagrangian are given. Under certain conditions, it is shown that any limit point of a sequence of stationary points of approximate augmented Lagrangian problems is a KKT point of the original semidefinite program and that a sequence of optimal solutions to augmented Lagrangian problems converges to a solution of the original semidefinite program.