In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to...In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to its growth term increasing linearly. Some new analysis tools were developed which can be used to deal with complexity "analysis of the algorithms which use analogous strategy in [5] to design the search directions for the Newton system. The complexity bounds for the algorithms with large- and small-update methodswere obtained, namely,O(qn^(p+q/q(P+1)log n/ε and O(q^2√n)log n/ε,respectlvely.展开更多
Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with si...Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.展开更多
This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution ar...This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution are given.And also someoptimal approximation solutions are discussed.展开更多
It is well known that for symmetric linear programming there exists a strictly complementary solution if the primal and the dual problems are both feasible. However, this is not necessary true for symmetric or general...It is well known that for symmetric linear programming there exists a strictly complementary solution if the primal and the dual problems are both feasible. However, this is not necessary true for symmetric or general semide finite programming even if both the primal problem and its dual problem are strictly feasible. Some other properties are also concerned.展开更多
A reduction of truss topology design problem formulated by semidefinite optimization (SDO) is considered. The finite groups and their representations are introduced to reduce the stiffness and mass matrices of truss...A reduction of truss topology design problem formulated by semidefinite optimization (SDO) is considered. The finite groups and their representations are introduced to reduce the stiffness and mass matrices of truss in size. Numerical results are given for both the original problem and the reduced problem to make a comparison.展开更多
Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWL...Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWLS) estimator is presented. Due to the nonconvex nature of the CWLS problem, it is difficult to obtain its globally optimal solution. However, according to the semidefinite relaxation, the CWLS problem can be relaxed as a convex semidefinite programming problem (SDP), which can be solved by using modern convex optimization algorithms. Moreover, this relaxation can be proved to be tight, i.e., the SDP solves the relaxed CWLS problem, and this hence guarantees the good per- formance of the proposed method. Furthermore, this method is extended to solve the localization problem with sensor position errors. Simulation results corroborate the theoretical results and the good performance of the proposed method.展开更多
This paper considers the NP (Non-deterministic Polynomial)-hard problem of finding a minimum value of a quadratic program (QP), subject to m non-convex inhomogeneous quadratic constraints. One effective algorithm is p...This paper considers the NP (Non-deterministic Polynomial)-hard problem of finding a minimum value of a quadratic program (QP), subject to m non-convex inhomogeneous quadratic constraints. One effective algorithm is proposed to get a feasible solution based on the optimal solution of its semidefinite programming (SDP) relaxation problem.展开更多
A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the...A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments.展开更多
We study two instances of polynomial optimization problem over a single sphere. The first problem is to compute the best rank-1 tensor approximation. We show the equivalence between two recent semidefinite relaxations...We study two instances of polynomial optimization problem over a single sphere. The first problem is to compute the best rank-1 tensor approximation. We show the equivalence between two recent semidefinite relaxations methods. The other one arises from Bose-Einstein condensates(BEC), whose objective function is a summation of a probably nonconvex quadratic function and a quartic term. These two polynomial optimization problems are closely connected since the BEC problem can be viewed as a structured fourth-order best rank-1 tensor approximation. We show that the BEC problem is NP-hard and propose a semidefinite relaxation with both deterministic and randomized rounding procedures. Explicit approximation ratios for these rounding procedures are presented. The performance of these semidefinite relaxations are illustrated on a few preliminary numerical experiments.展开更多
In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization(SDO) problems. The proposed algorithm is based on a new kernel fun...In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization(SDO) problems. The proposed algorithm is based on a new kernel function which differs from the existing kernel functions in which it has a double barrier term. With this function we define a new search direction and also a new proximity function for analyzing its complexity. We show that if q1 〉 q2 〉 1, the algorithm has O((q1 + 1) nq1+1/2(q1-q2)logn/ε)and O((q1 + 1)2(q1-q2)^3q1-2q2+1√n logn/c) complexity results for large- and small-update methods, respectively.展开更多
In this paper,we propose and analyze a full-Newton step feasible interior-point algorithm for semidefinite optimization based on a kernel function with linear growth term.The kernel function is used both for determini...In this paper,we propose and analyze a full-Newton step feasible interior-point algorithm for semidefinite optimization based on a kernel function with linear growth term.The kernel function is used both for determining the search directions and for measuring the distance between the given iterate and theμ-center for the algorithm.By developing a new norm-based proximity measure and some technical results,we derive the iteration bound that coincides with the currently best known iteration bound for the algorithm with small-update method.In our knowledge,this result is the first instance of full-Newton step feasible interior-point method for SDO which involving the kernel function.展开更多
In this paper,we present a primal-dual interior point algorithm for semidefinite optimization problems based on a new class of kernel functions.These functions constitute a combination of the classic kernel function a...In this paper,we present a primal-dual interior point algorithm for semidefinite optimization problems based on a new class of kernel functions.These functions constitute a combination of the classic kernel function and a barrier term.We derive the complexity bounds for large and small-update methods respectively.We show that the best result of iteration bounds for large and small-update methods can be achieved,namely O(q√n(log√n)^q+1/q logn/ε)for large-update methods and O(q^3/2(log√q)^q+1/q√nlogn/ε)for small-update methods.We test the efficiency and the validity of our algorithm by running some computational tests,then we compare our numerical results with results obtained by algorithms based on different kernel functions.展开更多
In this paper,we propose an interior-point algorithm based on a wide neighborhood for convex quadratic semidefinite optimization problems.Using the Nesterov–Todd direction as the search direction,we prove the converg...In this paper,we propose an interior-point algorithm based on a wide neighborhood for convex quadratic semidefinite optimization problems.Using the Nesterov–Todd direction as the search direction,we prove the convergence analysis and obtain the polynomial complexity bound of the proposed algorithm.Although the algorithm belongs to the class of large-step interior-point algorithms,its complexity coincides with the best iteration bound for short-step interior-point algorithms.The algorithm is also implemented to demonstrate that it is efficient.展开更多
文摘In the present paper we present a class of polynomial primal-dual interior-point algorithms for semidefmite optimization based on a kernel function. This kernel function is not a so-called self-regular function due to its growth term increasing linearly. Some new analysis tools were developed which can be used to deal with complexity "analysis of the algorithms which use analogous strategy in [5] to design the search directions for the Newton system. The complexity bounds for the algorithms with large- and small-update methodswere obtained, namely,O(qn^(p+q/q(P+1)log n/ε and O(q^2√n)log n/ε,respectlvely.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10117733), the Shanghai Leading Academic Discipline Project (Grant No.J50101), and the Foundation of Scientific Research for Selecting and Cultivating Young Excellent University Teachers in Shanghai (Grant No.06XPYQ52)
文摘Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.
基金This work was supposed by the National Nature Science Foundation of China
文摘This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution are given.And also someoptimal approximation solutions are discussed.
文摘It is well known that for symmetric linear programming there exists a strictly complementary solution if the primal and the dual problems are both feasible. However, this is not necessary true for symmetric or general semide finite programming even if both the primal problem and its dual problem are strictly feasible. Some other properties are also concerned.
基金Project supported by the National Natural Science Foundation of China (Grant No.10771133)the Research Fundation for the Doctoral Program of Higher Education (Grant No.200802800010)the Key Disciplines of Shanghai Municipality (GrantNo.s30104)
文摘A reduction of truss topology design problem formulated by semidefinite optimization (SDO) is considered. The finite groups and their representations are introduced to reduce the stiffness and mass matrices of truss in size. Numerical results are given for both the original problem and the reduced problem to make a comparison.
基金supported by the National Natural Science Foundation of China(61201282)the Science and Technology on Communication Information Security Control Laboratory Foundation(9140C130304120C13064)
文摘Time-differences-of-arrival (TDOA) and gain-ratios-of- arrival (GROA) measurements are used to determine the passive source location. Based on the measurement models, the con- strained weighted least squares (CWLS) estimator is presented. Due to the nonconvex nature of the CWLS problem, it is difficult to obtain its globally optimal solution. However, according to the semidefinite relaxation, the CWLS problem can be relaxed as a convex semidefinite programming problem (SDP), which can be solved by using modern convex optimization algorithms. Moreover, this relaxation can be proved to be tight, i.e., the SDP solves the relaxed CWLS problem, and this hence guarantees the good per- formance of the proposed method. Furthermore, this method is extended to solve the localization problem with sensor position errors. Simulation results corroborate the theoretical results and the good performance of the proposed method.
文摘This paper considers the NP (Non-deterministic Polynomial)-hard problem of finding a minimum value of a quadratic program (QP), subject to m non-convex inhomogeneous quadratic constraints. One effective algorithm is proposed to get a feasible solution based on the optimal solution of its semidefinite programming (SDP) relaxation problem.
基金Fundamental Research Funds for the Central Universities,China(No.2232019D3-38)Shanghai Sailing Program,China(No.22YF1400900)。
文摘A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments.
基金supported by National Natural Science Foundation of China (Grant Nos. 11401364, 11322109, 11331012, 11471325 and 11461161005)the National High Technology Research and Development Program of China (863 Program) (Grant No. 2013AA122902)+1 种基金the National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of SciencesNational Basic Research Program of China (973 Program) (Grant No. 2015CB856002)
文摘We study two instances of polynomial optimization problem over a single sphere. The first problem is to compute the best rank-1 tensor approximation. We show the equivalence between two recent semidefinite relaxations methods. The other one arises from Bose-Einstein condensates(BEC), whose objective function is a summation of a probably nonconvex quadratic function and a quartic term. These two polynomial optimization problems are closely connected since the BEC problem can be viewed as a structured fourth-order best rank-1 tensor approximation. We show that the BEC problem is NP-hard and propose a semidefinite relaxation with both deterministic and randomized rounding procedures. Explicit approximation ratios for these rounding procedures are presented. The performance of these semidefinite relaxations are illustrated on a few preliminary numerical experiments.
文摘In this paper, we establish the polynomial complexity of a primal-dual path-following interior point algorithm for solving semidefinite optimization(SDO) problems. The proposed algorithm is based on a new kernel function which differs from the existing kernel functions in which it has a double barrier term. With this function we define a new search direction and also a new proximity function for analyzing its complexity. We show that if q1 〉 q2 〉 1, the algorithm has O((q1 + 1) nq1+1/2(q1-q2)logn/ε)and O((q1 + 1)2(q1-q2)^3q1-2q2+1√n logn/c) complexity results for large- and small-update methods, respectively.
基金Supported by University Science Research Project of Anhui Province(KJ2019A1297)University Teaching Research Project of Anhui Province(2019jxtd144)。
文摘In this paper,we propose and analyze a full-Newton step feasible interior-point algorithm for semidefinite optimization based on a kernel function with linear growth term.The kernel function is used both for determining the search directions and for measuring the distance between the given iterate and theμ-center for the algorithm.By developing a new norm-based proximity measure and some technical results,we derive the iteration bound that coincides with the currently best known iteration bound for the algorithm with small-update method.In our knowledge,this result is the first instance of full-Newton step feasible interior-point method for SDO which involving the kernel function.
文摘In this paper,we present a primal-dual interior point algorithm for semidefinite optimization problems based on a new class of kernel functions.These functions constitute a combination of the classic kernel function and a barrier term.We derive the complexity bounds for large and small-update methods respectively.We show that the best result of iteration bounds for large and small-update methods can be achieved,namely O(q√n(log√n)^q+1/q logn/ε)for large-update methods and O(q^3/2(log√q)^q+1/q√nlogn/ε)for small-update methods.We test the efficiency and the validity of our algorithm by running some computational tests,then we compare our numerical results with results obtained by algorithms based on different kernel functions.
文摘In this paper,we propose an interior-point algorithm based on a wide neighborhood for convex quadratic semidefinite optimization problems.Using the Nesterov–Todd direction as the search direction,we prove the convergence analysis and obtain the polynomial complexity bound of the proposed algorithm.Although the algorithm belongs to the class of large-step interior-point algorithms,its complexity coincides with the best iteration bound for short-step interior-point algorithms.The algorithm is also implemented to demonstrate that it is efficient.