期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Modified Exact Jacobian Semidefinite Programming Relaxation for Celis-Dennis-Tapia Problem
1
作者 赵馨 孔汕汕 《Journal of Donghua University(English Edition)》 CAS 2023年第1期96-104,共9页
A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the... A modified exact Jacobian semidefinite programming(SDP)relaxation method is proposed in this paper to solve the Celis-Dennis-Tapia(CDT)problem using the Jacobian matrix of objective and constraining polynomials.In the modified relaxation problem,the number of introduced constraints and the lowest relaxation order decreases significantly.At the same time,the finite convergence property is guaranteed.In addition,the proposed method can be applied to the quadratically constrained problem with two quadratic constraints.Moreover,the efficiency of the proposed method is verified by numerical experiments. 展开更多
关键词 Celis-Dennis-Tapia(CDT)problem quadratically constrained problem with two quadratic constraints semidefinite programming(SDP)relaxation method
下载PDF
Semidefinite Relaxation for Two Mixed Binary Quadratically Constrained Quadratic Programs:Algorithms and Approximation Bounds
2
作者 Zi Xu Ming-Yi Hong 《Journal of the Operations Research Society of China》 EI CSCD 2016年第2期205-221,共17页
This paper develops new semidefinite programming(SDP)relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs and analyzes their approximation performance.The first class of ... This paper develops new semidefinite programming(SDP)relaxation techniques for two classes of mixed binary quadratically constrained quadratic programs and analyzes their approximation performance.The first class of problems finds two minimum norm vectors in N-dimensional real or complex Euclidean space,such that M out of 2M concave quadratic constraints are satisfied.By employing a special randomized rounding procedure,we show that the ratio between the norm of the optimal solution of this model and its SDP relaxation is upper bounded by 54πM2 in the real case and by 24√Mπin the complex case.The second class of problems finds a series of minimum norm vectors subject to a set of quadratic constraints and cardinality constraints with both binary and continuous variables.We show that in this case the approximation ratio is also bounded and independent of problem dimension for both the real and the complex cases. 展开更多
关键词 Nonconvex quadratically constrained quadratic programming semidefinite program relaxation Approximation bound NP-HARD
原文传递
An SDP randomized approximation algorithm for max hypergraph cut with limited unbalance 被引量:2
3
作者 XU BaoGang YU XingXing +1 位作者 ZHANG XiaoYan ZHANG Zan-Bo 《Science China Mathematics》 SCIE 2014年第12期2437-2462,共26页
We consider the design of semidefinite programming (SDP) based approximation algorithm for the problem Max Hypergraph Cut with Limited Unbalance (MHC-LU): Find a partition of the vertices of a weighted hypergraph... We consider the design of semidefinite programming (SDP) based approximation algorithm for the problem Max Hypergraph Cut with Limited Unbalance (MHC-LU): Find a partition of the vertices of a weighted hypergraph H = (V, E) into two subsets V1, V2 with ||V2| - |1/1 || ≤ u for some given u and maximizing the total weight of the edges meeting both V1 and V2. The problem MHC-LU generalizes several other combinatorial optimization problems including Max Cut, Max Cut with Limited Unbalance (MC-LU), Max Set Splitting, Max Ek-Set Splitting and Max Hypergraph Bisection. By generalizing several earlier ideas, we present an SDP randomized approximation algorithm for MHC-LU with guaranteed worst-case performance ratios for various unbalance parameters τ = u/|V|. We also give the worst-case performance ratio of the SDP-algorithm for approximating MHC-LU regardless of the value of τ. Our strengthened SDP relaxation and rounding method improve a result of Ageev and Sviridenko (2000) on Max Hypergraph Bisection (MHC-LU with u = 0), and results of Andersson and Engebretsen (1999), Gaur and Krishnamurti (2001) and Zhang et al. (2004) on Max Set Splitting (MHC-LU with u = |V|). Furthermore, our new formula for the performance ratio by a tighter analysis compared with that in Galbiati and Maffioli (2007) is responsible for the improvement of a result of Galbiati and Maffioli (2007) on MC-LU for some range of τ. 展开更多
关键词 max hypergraph cut with limited unbalance approximation algorithm performance ratio semidefinite programming relaxation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部