This paper presents a semiparametric adjustment method suitable for general cases.Assuming that the regularizer matrix is positive definite,the calculation method is discussed and the corresponding formulae are presen...This paper presents a semiparametric adjustment method suitable for general cases.Assuming that the regularizer matrix is positive definite,the calculation method is discussed and the corresponding formulae are presented.Finally,a simulated adjustment problem is constructed to explain the method given in this paper.The results from the semiparametric model and G_M model are compared.The results demonstrate that the model errors or the systematic errors of the observations can be detected correctly with the semiparametric estimate method.展开更多
This article studies parametric component and nonparametric component estimators in a semiparametric regression model with linear time series errors; their r-th mean consistency and complete consistency are obtained u...This article studies parametric component and nonparametric component estimators in a semiparametric regression model with linear time series errors; their r-th mean consistency and complete consistency are obtained under suitable conditions. Finally, the author shows that the usual weight functions based on nearest neighbor methods satisfy the designed assumptions imposed.展开更多
A geometric framework is proposed for semiparametric nonlinear regression models based on the concept of least favorable curve, introduced by Severini and Wong (1992). The authors use this framework to drive three kin...A geometric framework is proposed for semiparametric nonlinear regression models based on the concept of least favorable curve, introduced by Severini and Wong (1992). The authors use this framework to drive three kinds of improved approximate confidence regions for the parameter and parameter subset in terms of curvatures. The results obtained by Hamilton et al. (1982), Hamilton (1986) and Wei (1994) are extended to semiparametric nonlinear regression models.展开更多
This paper proposes parametric component and nonparametric component estimators in a semiparametric regression models based on least squares and weight function's method, their strong consistency and rib mean cons...This paper proposes parametric component and nonparametric component estimators in a semiparametric regression models based on least squares and weight function's method, their strong consistency and rib mean consistency are obtained under a locally generallied Gaussinan error's structure. Finally, the author showes that the usual weight functions based on nearest neighbor method satisfy the deigned assumptions imposed.展开更多
Tail risk is a classic topic in stressed portfolio optimization to treat unprecedented risks,while the traditional mean–variance approach may fail to perform well.This study proposes an innovative semiparametric meth...Tail risk is a classic topic in stressed portfolio optimization to treat unprecedented risks,while the traditional mean–variance approach may fail to perform well.This study proposes an innovative semiparametric method consisting of two modeling components:the nonparametric estimation and copula method for each marginal distribution of the portfolio and their joint distribution,respectively.We then focus on the optimal weights of the stressed portfolio and its optimal scale beyond the Gaussian restriction.Empirical studies include statistical estimation for the semiparametric method,risk measure minimization for optimal weights,and value measure maximization for the optimal scale to enlarge the investment.From the outputs of short-term and long-term data analysis,optimal stressed portfolios demonstrate the advantages of model flexibility to account for tail risk over the traditional mean–variance method.展开更多
In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonp...In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonparametric weight function method and their strong consistency is proved under the suitable conditions.展开更多
The assumption of homoscedasticity has received much attention in classical analysis of regression. Heteroscedasticity tests have been well studied in parametric and nonparametric regressions. The aim of this paper is...The assumption of homoscedasticity has received much attention in classical analysis of regression. Heteroscedasticity tests have been well studied in parametric and nonparametric regressions. The aim of this paper is to present a test of heteroscedasticity for nonlinear semiparametric regression models with nonparametric variance function. The validity of the proposed test is illustrated by two simulated examples and a real data example.展开更多
This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is...This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is well known, commonly used approach to deal with missing data is complete-case data. Combined the idea of complete-case data with a discussion of shrinkage estimation is made on different cluster. In order to avoid the biased results as well as improve the estimation efficiency, this article introduces Group Least Absolute Shrinkage and Selection Operator (Group Lasso) to semiparametric model. That is to say, the method combines the approach of local polynomial smoothing and the Least Absolute Shrinkage and Selection Operator. In that case, it can conduct nonparametric estimation and variable selection in a computationally efficient manner. According to the same criterion, the parametric estimators are also obtained. Additionally, for each cluster, the nonparametric and parametric estimators are derived, and then compute the weighted average per cluster as finally estimators. Moreover, the large sample properties of estimators are also derived respectively.展开更多
The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametr...The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametric transformation models. The aim of this article is to develop modified estimating equations under semiparametric transformation models of survival time with time-varying coefficient effect and time-varying continuous covariates. For this, it is important to organize the data in a counting process style and transform the time with standard transformation classes which shall be applied in this article. In the situation when the effect of coefficient and covariates change over time, the widely used maximum likelihood estimation method becomes more complex and burdensome in estimating consistent estimates. To overcome this problem, alternatively, the modified estimating equations were applied to estimate the unknown parameters and unspecified monotone transformation functions. The estimating equations were modified to incorporate the time-varying effect in both coefficient and covariates. The performance of the proposed methods is tested through a simulation study. To sum up the study, the effect of possibly time-varying covariates and time-varying coefficients was evaluated in some special cases of semiparametric transformation models. Finally, the results have shown that the role of the time-varying covariate in the semiparametric transformation models was plausible and credible.展开更多
The paper introduces a new simple semiparametric estimator of the conditional variance-covariance and correlation matrix (SP-DCC). While sharing a similar sequential approach to existing dynamic conditional correlatio...The paper introduces a new simple semiparametric estimator of the conditional variance-covariance and correlation matrix (SP-DCC). While sharing a similar sequential approach to existing dynamic conditional correlation (DCC) methods, SP-DCC has the advantage of not requiring the direct parameterization of the conditional covariance or correlation processes, therefore also avoiding any assumption on their long-run target. In the proposed framework, conditional variances are estimated by univariate GARCH models, for actual and suitably transformed series, in the first step;the latter are then nonlinearly combined in the second step, according to basic properties of the covariance and correlation operator, to yield nonparametric estimates of the various conditional covariances and correlations. Moreover, in contrast to available DCC methods, SP-DCC allows for straightforward estimation also for the non-symultaneous case, i.e. for the estimation of conditional cross-covariances and correlations, displaced at any time horizon of interest. A simple expost procedure to ensure well behaved conditional variance-covariance and correlation matrices, grounded on nonlinear shrinkage, is finally proposed. Due to its sequential implementation and scant computational burden, SP-DCC is very simple to apply and suitable for the modeling of vast sets of conditionally heteroskedastic time series.展开更多
In this paper, we propose a new estimation method for a nonparametric hidden Markov model(HMM), in which both the emission model and the transition matrix are nonparametric, and a semiparametric HMM, in which the tran...In this paper, we propose a new estimation method for a nonparametric hidden Markov model(HMM), in which both the emission model and the transition matrix are nonparametric, and a semiparametric HMM, in which the transition matrix is parametric while emission models are nonparametric. The estimation is based on a novel composite likelihood method, where the pairs of consecutive observations are treated as independent bivariate random variables. Therefore, the model is transformed into a mixture model, and a modified expectation-maximization(EM) algorithm is developed to compute the maximum composite likelihood.We systematically study asymptotic properties for both the nonparametric HMM and the semiparametric HMM. We also propose a generalized likelihood ratio test to choose between the nonparametric HMM and the semiparametric HMM. We derive the asymptotic distribution and prove the Wilk’s phenomenon of the proposed test statistics. Simulation studies and an application in volatility clustering analysis of the volatility index in the Chicago Board Options Exchange(CBOE) are conducted to demonstrate the effectiveness of the proposed methods.展开更多
This paper is concerned with ultrahigh dimensional data analysis,which has become increasingly important in diverse scientific fields.We develop a sure independence screening procedure via the measure of conditional m...This paper is concerned with ultrahigh dimensional data analysis,which has become increasingly important in diverse scientific fields.We develop a sure independence screening procedure via the measure of conditional mean dependence based on Copula(CC-SIS,for short).The CC-SIS can be implemented as easily as the sure independence screening procedures which respectively based on the Pearson correlation,conditional mean and distance correlation(SIS,SIRS and DC-SIS,for short)and can significantly improve the performance of feature screening.We establish the sure screening property for the CC-SIS,and conduct simulations to examine its finite sample performance.Numerical comparison indicates that the CC-SIS performs better than the other two methods in various models.At last,we also illustrate the CC-SIS through a real data example.展开更多
In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the mode...In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the model is suggested by introducing the working covariance matrix. It is proved that the proposed statistic is asymptotically standard chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. A simulation study is conducted to compare the proposed method with the generalized least squares method in terms of coverage accuracy and average lengths of the confidence intervals.展开更多
Consider a semiparametric regression model with linear time series errors Y_k= x′ _kβ + g(t_k) + ε_k, 1 ≤ k ≤ n, where Y_k's are responses, x_k =(x_(k1),x_(k2),···,x_(kp))′ and t_k ∈ T is con...Consider a semiparametric regression model with linear time series errors Y_k= x′ _kβ + g(t_k) + ε_k, 1 ≤ k ≤ n, where Y_k's are responses, x_k =(x_(k1),x_(k2),···,x_(kp))′ and t_k ∈ T is contained in R are fixed design points, β =(β_1,β_2,···,β_p)′ is an unknown parameter vector, g(·) is an unknown bounded real-valuedfunction defined on a compact subset T of the real line R, and ε_k is a linear process given byε_k = ∑ from j=0 to ∞ of ψ_je_(k-j), ψ_0=1, where ∑ from j=0 to ∞ of |ψ_j| < ∞, and e_j,j=0, +-1, +-2,···, ard i.i.d. random variables. In this paper we establish the asymptoticnormality of the least squares estimator of β, a smooth estimator of g(·), and estimators of theautocovariance and autocorrelation functions of the linear process ε_k.展开更多
In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing respo...In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure.展开更多
Consider the following heteroscedastic semiparametric regression model:where {Xi, 1 〈 i 〈 n} are random design points, errors {ei, 1 〈 i 〈 n} are negatively associated (NA) random variables, (r2 = h(ui), and...Consider the following heteroscedastic semiparametric regression model:where {Xi, 1 〈 i 〈 n} are random design points, errors {ei, 1 〈 i 〈 n} are negatively associated (NA) random variables, (r2 = h(ui), and {ui} and {ti} are two nonrandom sequences on [0, 1]. Some wavelet estimators of the parametric component β, the non- parametric component g(t) and the variance function h(u) are given. Under some general conditions, the strong convergence rate of these wavelet estimators is O(n- 1 log n). Hence our results are extensions of those re, sults on independent random error settings.展开更多
The inference for the parameters in a semiparametric regression model is studied by using the wavelet and the bootstrap methods. The bootstrap statistics are constructed by using Efron's resampling technique, and the...The inference for the parameters in a semiparametric regression model is studied by using the wavelet and the bootstrap methods. The bootstrap statistics are constructed by using Efron's resampling technique, and the strong uniform convergence of the bootstrap approximation is proved. Our results can be used to construct the large sample confidence intervals for the parameters of interest. A simulation study is conducted to evaluate the finite-sample performance of the bootstrap method and to compare it with the normal approximation-based method.展开更多
Suppose that the patients’ survival times,Y,are random variables following the semiparametric regression model Y=Xβ+g(T)+ε,where (X,T) is a radom vector taking values in R×[0,1],β is an unknown parameter,g(...Suppose that the patients’ survival times,Y,are random variables following the semiparametric regression model Y=Xβ+g(T)+ε,where (X,T) is a radom vector taking values in R×[0,1],β is an unknown parameter,g(·) is an unknown smooth regression function and εis the random error with zero mean and variance σ2.It is assumed that (X,T) is independent of ε.The estimators βn and gm(·) ofβ and g(·) are defined,respectively,when the observations are randomly censored on the right and the censoring distribution is unknown.Moreover,it isshown that βm is asymptotically normal and gm(·) is weak consistence with rate Op(n-1/3).展开更多
This paper considers the estimation of a semiparametric isotonic regression model when the covariates are measured with additive errors and the response is randomly right censored by a censoring time.The authors show ...This paper considers the estimation of a semiparametric isotonic regression model when the covariates are measured with additive errors and the response is randomly right censored by a censoring time.The authors show that the proposed estimator of the regression parameter is rootn consistent and asymptotically normal.The authors also show that the isotonic estimator of the functional component,at a fixed point,is cubic root-n consistent and converges in distribution to the slope at zero of the greatest convex minorant of the sum of a two-sided standard Brownian motion and the square of the time parameter.A simulation study is carried out to investigate the performance of the estimators proposed in this article.展开更多
Model average receives much attention in recent years.This paper considers the semiparametric model averaging for high-dimensional longitudinal data.To minimize the prediction error,the authors estimate the model weig...Model average receives much attention in recent years.This paper considers the semiparametric model averaging for high-dimensional longitudinal data.To minimize the prediction error,the authors estimate the model weights using a leave-subject-out cross-validation procedure.Asymptotic optimality of the proposed method is proved in the sense that leave-subject-out cross-validation achieves the lowest possible prediction loss asymptotically.Simulation studies show that the performance of the proposed model average method is much better than that of some commonly used model selection and averaging methods.展开更多
文摘This paper presents a semiparametric adjustment method suitable for general cases.Assuming that the regularizer matrix is positive definite,the calculation method is discussed and the corresponding formulae are presented.Finally,a simulated adjustment problem is constructed to explain the method given in this paper.The results from the semiparametric model and G_M model are compared.The results demonstrate that the model errors or the systematic errors of the observations can be detected correctly with the semiparametric estimate method.
基金This article was supported by the National Natural Science Foundation of China(10571001)the Innovation Group Foundation of Anhui University
文摘This article studies parametric component and nonparametric component estimators in a semiparametric regression model with linear time series errors; their r-th mean consistency and complete consistency are obtained under suitable conditions. Finally, the author shows that the usual weight functions based on nearest neighbor methods satisfy the designed assumptions imposed.
文摘A geometric framework is proposed for semiparametric nonlinear regression models based on the concept of least favorable curve, introduced by Severini and Wong (1992). The authors use this framework to drive three kinds of improved approximate confidence regions for the parameter and parameter subset in terms of curvatures. The results obtained by Hamilton et al. (1982), Hamilton (1986) and Wei (1994) are extended to semiparametric nonlinear regression models.
文摘This paper proposes parametric component and nonparametric component estimators in a semiparametric regression models based on least squares and weight function's method, their strong consistency and rib mean consistency are obtained under a locally generallied Gaussinan error's structure. Finally, the author showes that the usual weight functions based on nearest neighbor method satisfy the deigned assumptions imposed.
文摘Tail risk is a classic topic in stressed portfolio optimization to treat unprecedented risks,while the traditional mean–variance approach may fail to perform well.This study proposes an innovative semiparametric method consisting of two modeling components:the nonparametric estimation and copula method for each marginal distribution of the portfolio and their joint distribution,respectively.We then focus on the optimal weights of the stressed portfolio and its optimal scale beyond the Gaussian restriction.Empirical studies include statistical estimation for the semiparametric method,risk measure minimization for optimal weights,and value measure maximization for the optimal scale to enlarge the investment.From the outputs of short-term and long-term data analysis,optimal stressed portfolios demonstrate the advantages of model flexibility to account for tail risk over the traditional mean–variance method.
基金Supported by the National Natural Science Foundation of China(10571008)Supported by the Natural Science Foundation of Henan(0511013300)Supported by the National Science Foundation of Henan Education Department(2006110012)
文摘In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonparametric weight function method and their strong consistency is proved under the suitable conditions.
基金Supported by the Natural Science Foundation of Jiangsu Province (BK2008284)
文摘The assumption of homoscedasticity has received much attention in classical analysis of regression. Heteroscedasticity tests have been well studied in parametric and nonparametric regressions. The aim of this paper is to present a test of heteroscedasticity for nonlinear semiparametric regression models with nonparametric variance function. The validity of the proposed test is illustrated by two simulated examples and a real data example.
文摘This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is well known, commonly used approach to deal with missing data is complete-case data. Combined the idea of complete-case data with a discussion of shrinkage estimation is made on different cluster. In order to avoid the biased results as well as improve the estimation efficiency, this article introduces Group Least Absolute Shrinkage and Selection Operator (Group Lasso) to semiparametric model. That is to say, the method combines the approach of local polynomial smoothing and the Least Absolute Shrinkage and Selection Operator. In that case, it can conduct nonparametric estimation and variable selection in a computationally efficient manner. According to the same criterion, the parametric estimators are also obtained. Additionally, for each cluster, the nonparametric and parametric estimators are derived, and then compute the weighted average per cluster as finally estimators. Moreover, the large sample properties of estimators are also derived respectively.
文摘The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametric transformation models. The aim of this article is to develop modified estimating equations under semiparametric transformation models of survival time with time-varying coefficient effect and time-varying continuous covariates. For this, it is important to organize the data in a counting process style and transform the time with standard transformation classes which shall be applied in this article. In the situation when the effect of coefficient and covariates change over time, the widely used maximum likelihood estimation method becomes more complex and burdensome in estimating consistent estimates. To overcome this problem, alternatively, the modified estimating equations were applied to estimate the unknown parameters and unspecified monotone transformation functions. The estimating equations were modified to incorporate the time-varying effect in both coefficient and covariates. The performance of the proposed methods is tested through a simulation study. To sum up the study, the effect of possibly time-varying covariates and time-varying coefficients was evaluated in some special cases of semiparametric transformation models. Finally, the results have shown that the role of the time-varying covariate in the semiparametric transformation models was plausible and credible.
文摘The paper introduces a new simple semiparametric estimator of the conditional variance-covariance and correlation matrix (SP-DCC). While sharing a similar sequential approach to existing dynamic conditional correlation (DCC) methods, SP-DCC has the advantage of not requiring the direct parameterization of the conditional covariance or correlation processes, therefore also avoiding any assumption on their long-run target. In the proposed framework, conditional variances are estimated by univariate GARCH models, for actual and suitably transformed series, in the first step;the latter are then nonlinearly combined in the second step, according to basic properties of the covariance and correlation operator, to yield nonparametric estimates of the various conditional covariances and correlations. Moreover, in contrast to available DCC methods, SP-DCC allows for straightforward estimation also for the non-symultaneous case, i.e. for the estimation of conditional cross-covariances and correlations, displaced at any time horizon of interest. A simple expost procedure to ensure well behaved conditional variance-covariance and correlation matrices, grounded on nonlinear shrinkage, is finally proposed. Due to its sequential implementation and scant computational burden, SP-DCC is very simple to apply and suitable for the modeling of vast sets of conditionally heteroskedastic time series.
基金supported by Shanghai Young Talent Development Program and Innovative Research Team of Shanghai University of Finance and Economics(Grant No.2020110930)supported by the Department of Energy of USA(Grant No.DE-EE0008574)。
文摘In this paper, we propose a new estimation method for a nonparametric hidden Markov model(HMM), in which both the emission model and the transition matrix are nonparametric, and a semiparametric HMM, in which the transition matrix is parametric while emission models are nonparametric. The estimation is based on a novel composite likelihood method, where the pairs of consecutive observations are treated as independent bivariate random variables. Therefore, the model is transformed into a mixture model, and a modified expectation-maximization(EM) algorithm is developed to compute the maximum composite likelihood.We systematically study asymptotic properties for both the nonparametric HMM and the semiparametric HMM. We also propose a generalized likelihood ratio test to choose between the nonparametric HMM and the semiparametric HMM. We derive the asymptotic distribution and prove the Wilk’s phenomenon of the proposed test statistics. Simulation studies and an application in volatility clustering analysis of the volatility index in the Chicago Board Options Exchange(CBOE) are conducted to demonstrate the effectiveness of the proposed methods.
基金Supported by Natural Science Foundation of Henan(Grant No.202300410066)Program for Science and Technology Development of Henan Province(Grant No.242102310350).
文摘This paper is concerned with ultrahigh dimensional data analysis,which has become increasingly important in diverse scientific fields.We develop a sure independence screening procedure via the measure of conditional mean dependence based on Copula(CC-SIS,for short).The CC-SIS can be implemented as easily as the sure independence screening procedures which respectively based on the Pearson correlation,conditional mean and distance correlation(SIS,SIRS and DC-SIS,for short)and can significantly improve the performance of feature screening.We establish the sure screening property for the CC-SIS,and conduct simulations to examine its finite sample performance.Numerical comparison indicates that the CC-SIS performs better than the other two methods in various models.At last,we also illustrate the CC-SIS through a real data example.
基金China Postdoctoral Science Foundation Funded Project (20080430633)Shanghai Postdoctoral Scientific Program (08R214121)+3 种基金the National Natural Science Foundation of China (10871013)the Research Fund for the Doctoral Program of Higher Education (20070005003)the Natural Science Foundation of Beijing (1072004)the Basic Research and Frontier Technology Foundation of He'nan (072300410090)
文摘In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the model is suggested by introducing the working covariance matrix. It is proved that the proposed statistic is asymptotically standard chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. A simulation study is conducted to compare the proposed method with the generalized least squares method in terms of coverage accuracy and average lengths of the confidence intervals.
基金CHEN Min's work is supported by Grant No. 70221001 and No. 70331001 from NNSFC and Grant No. KZCX2-SW-118 from CAS.
文摘Consider a semiparametric regression model with linear time series errors Y_k= x′ _kβ + g(t_k) + ε_k, 1 ≤ k ≤ n, where Y_k's are responses, x_k =(x_(k1),x_(k2),···,x_(kp))′ and t_k ∈ T is contained in R are fixed design points, β =(β_1,β_2,···,β_p)′ is an unknown parameter vector, g(·) is an unknown bounded real-valuedfunction defined on a compact subset T of the real line R, and ε_k is a linear process given byε_k = ∑ from j=0 to ∞ of ψ_je_(k-j), ψ_0=1, where ∑ from j=0 to ∞ of |ψ_j| < ∞, and e_j,j=0, +-1, +-2,···, ard i.i.d. random variables. In this paper we establish the asymptoticnormality of the least squares estimator of β, a smooth estimator of g(·), and estimators of theautocovariance and autocorrelation functions of the linear process ε_k.
基金Supported by National Natural Science Foundation of China (Grant No. 10871013), Natural Science Foundation of Beijing (Grant No. 1072004), and Natural Science Foundation of Guangxi Province (Grant No. 2010GXNSFB013051)
文摘In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure.
基金supported by the National Natural Science Foundation of China (No. 11071022)the Key Project of the Ministry of Education of China (No. 209078)the Youth Project of Hubei Provincial Department of Education of China (No. Q20122202)
文摘Consider the following heteroscedastic semiparametric regression model:where {Xi, 1 〈 i 〈 n} are random design points, errors {ei, 1 〈 i 〈 n} are negatively associated (NA) random variables, (r2 = h(ui), and {ui} and {ti} are two nonrandom sequences on [0, 1]. Some wavelet estimators of the parametric component β, the non- parametric component g(t) and the variance function h(u) are given. Under some general conditions, the strong convergence rate of these wavelet estimators is O(n- 1 log n). Hence our results are extensions of those re, sults on independent random error settings.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10571008, 10871013)Beijing Natural Science Foundation (Grant No. 1072004)Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20070005003)
文摘The inference for the parameters in a semiparametric regression model is studied by using the wavelet and the bootstrap methods. The bootstrap statistics are constructed by using Efron's resampling technique, and the strong uniform convergence of the bootstrap approximation is proved. Our results can be used to construct the large sample confidence intervals for the parameters of interest. A simulation study is conducted to evaluate the finite-sample performance of the bootstrap method and to compare it with the normal approximation-based method.
基金Project supported by China Postdoctoral Science Foundation and the National Science Foundation of China.
文摘Suppose that the patients’ survival times,Y,are random variables following the semiparametric regression model Y=Xβ+g(T)+ε,where (X,T) is a radom vector taking values in R×[0,1],β is an unknown parameter,g(·) is an unknown smooth regression function and εis the random error with zero mean and variance σ2.It is assumed that (X,T) is independent of ε.The estimators βn and gm(·) ofβ and g(·) are defined,respectively,when the observations are randomly censored on the right and the censoring distribution is unknown.Moreover,it isshown that βm is asymptotically normal and gm(·) is weak consistence with rate Op(n-1/3).
基金supported by the National Natural Science Foundation of China under Grant No.10971007Foundation of Academic Discipline Program at Central University of Finance and Economics+2 种基金Funding Project of Science and Technology Research Plan of Beijing Education Committee under Grant No.00600054K1002Fund of 211 Project at Central University of Finance and Economics2012 National Project of Statistical Research
文摘This paper considers the estimation of a semiparametric isotonic regression model when the covariates are measured with additive errors and the response is randomly right censored by a censoring time.The authors show that the proposed estimator of the regression parameter is rootn consistent and asymptotically normal.The authors also show that the isotonic estimator of the functional component,at a fixed point,is cubic root-n consistent and converges in distribution to the slope at zero of the greatest convex minorant of the sum of a two-sided standard Brownian motion and the square of the time parameter.A simulation study is carried out to investigate the performance of the estimators proposed in this article.
基金the Ministry of Science and Technology of China under Grant No.2016YFB0502301Academy for Multidisciplinary Studies of Capital Normal University,and the National Natural Science Foundation of China under Grant Nos.11971323 and 11529101。
文摘Model average receives much attention in recent years.This paper considers the semiparametric model averaging for high-dimensional longitudinal data.To minimize the prediction error,the authors estimate the model weights using a leave-subject-out cross-validation procedure.Asymptotic optimality of the proposed method is proved in the sense that leave-subject-out cross-validation achieves the lowest possible prediction loss asymptotically.Simulation studies show that the performance of the proposed model average method is much better than that of some commonly used model selection and averaging methods.