期刊文献+
共找到423篇文章
< 1 2 22 >
每页显示 20 50 100
STRONG CONVERGENCE RATES OF SEVERAL ESTIMATORS IN SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS 被引量:1
1
作者 周勇 尤进红 王晓婧 《Acta Mathematica Scientia》 SCIE CSCD 2009年第5期1113-1127,共15页
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop... This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively. 展开更多
关键词 partially linear regression model varying-coefficient profile leastsquares error variance strong convergence rate law of iterated logarithm
下载PDF
Semiparametric Regression and Model Refining 被引量:13
2
作者 SUN Haiyan WU Yun 《Geo-Spatial Information Science》 2002年第4期10-13,共4页
This paper presents a semiparametric adjustment method suitable for general cases.Assuming that the regularizer matrix is positive definite,the calculation method is discussed and the corresponding formulae are presen... This paper presents a semiparametric adjustment method suitable for general cases.Assuming that the regularizer matrix is positive definite,the calculation method is discussed and the corresponding formulae are presented.Finally,a simulated adjustment problem is constructed to explain the method given in this paper.The results from the semiparametric model and G_M model are compared.The results demonstrate that the model errors or the systematic errors of the observations can be detected correctly with the semiparametric estimate method. 展开更多
关键词 model error systematric error semiparametric regression model refine regularizer matrix smoothing parameter
下载PDF
ON CONFIDENCE REGIONS OF SEMIPARAMETRIC NONLINEAR REGRESSION MODELS(A GEOMETRIC APPROACH) 被引量:3
3
作者 朱仲义 唐年胜 韦博成 《Acta Mathematica Scientia》 SCIE CSCD 2000年第1期68-75,共8页
A geometric framework is proposed for semiparametric nonlinear regression models based on the concept of least favorable curve, introduced by Severini and Wong (1992). The authors use this framework to drive three kin... A geometric framework is proposed for semiparametric nonlinear regression models based on the concept of least favorable curve, introduced by Severini and Wong (1992). The authors use this framework to drive three kinds of improved approximate confidence regions for the parameter and parameter subset in terms of curvatures. The results obtained by Hamilton et al. (1982), Hamilton (1986) and Wei (1994) are extended to semiparametric nonlinear regression models. 展开更多
关键词 confidence regions CURVATURES nonlinear regression models score statistic semiparametric models
下载PDF
The Latest Progress in Varying-coefficient Models 被引量:2
4
作者 LU Yi-qiang LI Yu-ping 《Chinese Quarterly Journal of Mathematics》 CSCD 2009年第4期475-484,共10页
Varying-coefficient models are a useful extension of classical linear model. They are widely applied to economics, biomedicine, epidemiology, and so on. There are extensive studies on them in the latest three decade y... Varying-coefficient models are a useful extension of classical linear model. They are widely applied to economics, biomedicine, epidemiology, and so on. There are extensive studies on them in the latest three decade years. In this paper, many of models related to varying-coefficient models are gathered up. All kinds of the estimation procedures and theory of hypothesis test on the varying-coefficients model are summarized. Prom my opinion, some aspects waiting to study are proposed. 展开更多
关键词 varying-coefficient model B-spline estimation local estimation generalized likelihood ratio test sieve empirical likelihood
下载PDF
Statistical Diagnostic for Varying-Coefficient Single-Index Models Based on Empirical Likelihood Method 被引量:1
5
作者 王淑玲 邓小洪 廖大庆 《Journal of Donghua University(English Edition)》 EI CAS 2014年第4期493-496,共4页
Varying-coefficient single-index model( VCSIM) avoids the so-called "curse of dimensionality " and is flexible enough to include several important statistical models. This paper considers statistical diagnos... Varying-coefficient single-index model( VCSIM) avoids the so-called "curse of dimensionality " and is flexible enough to include several important statistical models. This paper considers statistical diagnosis for VCSIM. First,the parametric estimation equation is established based on empirical likelihood. Then,some diagnosis statistics are defined. At last, an example is given to illustrate all the results. 展开更多
关键词 varying-coefficient single-index model(VCSIM) empirical likelihood OUTLIERS influence analysis
下载PDF
Heteroscedasticity check in nonlinear semiparametric models based on nonparametric variance function
6
作者 QU Xiao-yi LIN Jin-guan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2008年第4期401-409,共9页
The assumption of homoscedasticity has received much attention in classical analysis of regression. Heteroscedasticity tests have been well studied in parametric and nonparametric regressions. The aim of this paper is... The assumption of homoscedasticity has received much attention in classical analysis of regression. Heteroscedasticity tests have been well studied in parametric and nonparametric regressions. The aim of this paper is to present a test of heteroscedasticity for nonlinear semiparametric regression models with nonparametric variance function. The validity of the proposed test is illustrated by two simulated examples and a real data example. 展开更多
关键词 heteroscedasticity check nonlinear semiparametric regression model asymptotic normality nonparametric variance function
下载PDF
Shrinkage Estimation of Semiparametric Model with Missing Responses for Cluster Data
7
作者 Mingxing Zhang Jiannan Qiao +1 位作者 Huawei Yang Zixin Liu 《Open Journal of Statistics》 2015年第7期768-776,共9页
This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is... This paper simultaneously investigates variable selection and imputation estimation of semiparametric partially linear varying-coefficient model in that case where there exist missing responses for cluster data. As is well known, commonly used approach to deal with missing data is complete-case data. Combined the idea of complete-case data with a discussion of shrinkage estimation is made on different cluster. In order to avoid the biased results as well as improve the estimation efficiency, this article introduces Group Least Absolute Shrinkage and Selection Operator (Group Lasso) to semiparametric model. That is to say, the method combines the approach of local polynomial smoothing and the Least Absolute Shrinkage and Selection Operator. In that case, it can conduct nonparametric estimation and variable selection in a computationally efficient manner. According to the same criterion, the parametric estimators are also obtained. Additionally, for each cluster, the nonparametric and parametric estimators are derived, and then compute the weighted average per cluster as finally estimators. Moreover, the large sample properties of estimators are also derived respectively. 展开更多
关键词 semiparametric PARTIALLY Linear varying-coefficient model MISSING RESPONSES CLUSTER DATA Group Lasso
下载PDF
Semiparametric Estimation of Multivariate GARCH Models
8
作者 Claudio Morana 《Open Journal of Statistics》 2015年第7期852-858,共7页
The paper introduces a new simple semiparametric estimator of the conditional variance-covariance and correlation matrix (SP-DCC). While sharing a similar sequential approach to existing dynamic conditional correlatio... The paper introduces a new simple semiparametric estimator of the conditional variance-covariance and correlation matrix (SP-DCC). While sharing a similar sequential approach to existing dynamic conditional correlation (DCC) methods, SP-DCC has the advantage of not requiring the direct parameterization of the conditional covariance or correlation processes, therefore also avoiding any assumption on their long-run target. In the proposed framework, conditional variances are estimated by univariate GARCH models, for actual and suitably transformed series, in the first step;the latter are then nonlinearly combined in the second step, according to basic properties of the covariance and correlation operator, to yield nonparametric estimates of the various conditional covariances and correlations. Moreover, in contrast to available DCC methods, SP-DCC allows for straightforward estimation also for the non-symultaneous case, i.e. for the estimation of conditional cross-covariances and correlations, displaced at any time horizon of interest. A simple expost procedure to ensure well behaved conditional variance-covariance and correlation matrices, grounded on nonlinear shrinkage, is finally proposed. Due to its sequential implementation and scant computational burden, SP-DCC is very simple to apply and suitable for the modeling of vast sets of conditionally heteroskedastic time series. 展开更多
关键词 MULTIVARIATE GARCH model Dynamic CONDITIONAL CORRELATION semiparametric ESTIMATION
下载PDF
A Simulation Study on Comparing General Class of Semiparametric Transformation Models for Survival Outcome with Time-Varying Coefficients and Covariates
9
作者 Yemane Hailu Fissuh Tsegay Giday Woldu +1 位作者 Idriss Abdelmajid Idriss Ahmed Abebe Zewdie Kebebe 《Open Journal of Statistics》 2019年第2期169-180,共12页
The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametr... The consideration of the time-varying covariate and time-varying coefficient effect in survival models are plausible and robust techniques. Such kind of analysis can be carried out with a general class of semiparametric transformation models. The aim of this article is to develop modified estimating equations under semiparametric transformation models of survival time with time-varying coefficient effect and time-varying continuous covariates. For this, it is important to organize the data in a counting process style and transform the time with standard transformation classes which shall be applied in this article. In the situation when the effect of coefficient and covariates change over time, the widely used maximum likelihood estimation method becomes more complex and burdensome in estimating consistent estimates. To overcome this problem, alternatively, the modified estimating equations were applied to estimate the unknown parameters and unspecified monotone transformation functions. The estimating equations were modified to incorporate the time-varying effect in both coefficient and covariates. The performance of the proposed methods is tested through a simulation study. To sum up the study, the effect of possibly time-varying covariates and time-varying coefficients was evaluated in some special cases of semiparametric transformation models. Finally, the results have shown that the role of the time-varying covariate in the semiparametric transformation models was plausible and credible. 展开更多
关键词 Estimating Equation semiparametric Transformation models TIME-TO-EVENT Outcomes TIME-VARYING COEFFICIENTS TIME-VARYING COVARIATE
下载PDF
Strong Consistency of Estimators of a Semiparametric Regression Model under Fixed Design
10
作者 TIAN Ping XUE Liu-gen 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2006年第2期202-209,共8页
In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonp... In this paper, we consider the following semipaxametric regression model under fixed design: yi = xi′β+g(xi)+ei. The estimators of β, g(·) and σ^2 axe obtained by using the least squares and usual nonparametric weight function method and their strong consistency is proved under the suitable conditions. 展开更多
关键词 semiparametric regression model least square estimation weight function strong consistency
下载PDF
Variable Selection for Semiparametric Varying-Coefficient Partially Linear Models with Missing Response at Random 被引量:9
11
作者 Pei Xin ZHAO Liu Gen XUE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第11期2205-2216,共12页
In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing respo... In this paper, we present a variable selection procedure by combining basis function approximations with penalized estimating equations for semiparametric varying-coefficient partially linear models with missing response at random. The proposed procedure simultaneously selects significant variables in parametric components and nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency of the variable selection procedure and the convergence rate of the regularized estimators. A simulation study is undertaken to assess the finite sample performance of the proposed variable selection procedure. 展开更多
关键词 semiparametric varying-coefficient partially linear model variable selection SCAD missing data
原文传递
Empirical Likelihood Based Diagnostics for Heteroscedasticity in Semiparametric Varying-Coefficient Partially Linear Models with Missing Responses 被引量:2
12
作者 LIU Feng GAO Weiqing +2 位作者 HE Jing FU Xinwei KANG Xinmei 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2021年第3期1175-1188,共14页
This paper proposes an empirical likelihood based diagnostic technique for heteroscedasticity for semiparametric varying-coefficient partially linear models with missing responses. Firstly, the authors complement the ... This paper proposes an empirical likelihood based diagnostic technique for heteroscedasticity for semiparametric varying-coefficient partially linear models with missing responses. Firstly, the authors complement the missing response variables by regression method. Then, the empirical likelihood method is introduced to study the heteroscedasticity of the semiparametric varying-coefficient partially linear models with complete-case data. Finally, the authors obtain the finite sample property by numerical simulation. 展开更多
关键词 Empirical likelihood ratio HETEROSCEDASTICITY response missing with MAR semiparametric varying-coefficient partially linear models
原文传递
Sieve M-estimation for semiparametric varying-coefficient partially linear regression model 被引量:1
13
作者 HU Tao 1,2 & CUI HengJian 1,2 1 School of Mathematical Sciences,Beijing Normal University,Laboratory of Mathematics and Complex Systems,Ministry of Education,Beijing 100875,China 2 School of Mathematical Sciences,Capital Normal University,Beijing 100048,China 《Science China Mathematics》 SCIE 2010年第8期1995-2010,共16页
This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear ... This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable.A sieve M-estimation method is proposed and the asymptotic properties of the proposed estimators are discussed.Our main object is to estimate the nonparametric component and the unknown parameters simultaneously.It is easier to compute and the required computation burden is much less than the existing two-stage estimation method.Furthermore,the sieve M-estimation is robust in the presence of outliers if we choose appropriate ρ(·).Under some mild conditions,the estimators are shown to be strongly consistent;the convergence rate of the estimator for the unknown nonparametric component is obtained and the estimator for the unknown parameter is shown to be asymptotically normally distributed.Numerical experiments are carried out to investigate the performance of the proposed method. 展开更多
关键词 partly linear model varying-coefficient robustness optimal convergence rate asymptotic NORMALITY
原文传递
Testing Serial Correlation in Semiparametric Varying-Coefficient Partially Linear EV Models
14
作者 Xue-mei Hu Zhi-zhong Wang Feng Liu 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2008年第1期99-116,共18页
This paper studies estimation and serial correlation test of a semiparametric varying-coefficient partially linear EV model of the form Y = X^Tβ +Z^Tα(T) +ε,ξ = X + η with the identifying condition E[(ε,... This paper studies estimation and serial correlation test of a semiparametric varying-coefficient partially linear EV model of the form Y = X^Tβ +Z^Tα(T) +ε,ξ = X + η with the identifying condition E[(ε,η^T)^T] =0, Cov[(ε,η^T)^T] = σ^2Ip+1. The estimators of interested regression parameters /3 , and the model error variance σ2, as well as the nonparametric components α(T), are constructed. Under some regular conditions, we show that the estimators of the unknown vector β and the unknown parameter σ2 are strongly consistent and asymptotically normal and that the estimator of α(T) achieves the optimal strong convergence rate of the usual nonparametric regression. Based on these estimators and asymptotic properties, we propose the VN,p test statistic and empirical log-likelihood ratio statistic for testing serial correlation in the model. The proposed statistics are shown to have asymptotic normal or chi-square distributions under the null hypothesis of no serial correlation. Some simulation studies are conducted to illustrate the finite sample performance of the proposed tests. 展开更多
关键词 varying-coefficient model partial linear EV model the generalized least squares estimation serial correlation empirical likelihood
原文传递
Efficient Estimation for Semiparametric Varying-Coefficient Partially Linear Regression Models with Current Status Data
15
作者 Tao Hu Heng-jian Cui Xing-wei Tong 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第2期195-204,共10页
This article considers a semiparametric varying-coefficient partially linear regression model with current status data. The semiparametric varying-coefficient partially linear regression model which is a generalizatio... This article considers a semiparametric varying-coefficient partially linear regression model with current status data. The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are conducted to examine the small-sample properties of the proposed estimates and a real dataset is used to illustrate our approach. 展开更多
关键词 Partly linear model varying-coefficient current status data asymptotically efficient estimator sieve MLE
原文传递
Local Empirical Likelihood Diagnosis of Varying Coefficient Density-Ratio Models Based on Case-Control Data
16
作者 Shuling Wang Lin Zheng Jiangtao Dai 《Open Journal of Statistics》 2014年第9期751-756,共6页
In this paper, a varying-coefficient density-ratio model for case-control studies is developed. We investigate the local empirical likelihood diagnosis of varying coefficient density-ratio model for case-control data.... In this paper, a varying-coefficient density-ratio model for case-control studies is developed. We investigate the local empirical likelihood diagnosis of varying coefficient density-ratio model for case-control data. The local empirical log-likelihood ratios for the nonparametric coefficient functions are introduced. First, the estimation equations based on empirical likelihood method are established. Then, a few of diagnostic statistics are proposed. At last, we also examine the performance of proposed method for finite sample sizes through simulation studies. 展开更多
关键词 varying-coefficient Density-Ratio model LOCAL Empirical Likelihood Outliers Influence Analysis
下载PDF
财政教育投入、产业结构升级对全要素生产率的影响
17
作者 朱天星 陈沈芳 贺莉 《沈阳工业大学学报(社会科学版)》 2024年第2期192-197,共6页
财政教育投入是我国教育投入的主要力量,对于普及义务教育和形成人力资本发挥着重要作用。人力资本是提高劳动力质量和实现技术进步的主要基础,研究财政教育投入对经济增长效率的作用机制和区域差异具有很好的理论和实践意义。在内生经... 财政教育投入是我国教育投入的主要力量,对于普及义务教育和形成人力资本发挥着重要作用。人力资本是提高劳动力质量和实现技术进步的主要基础,研究财政教育投入对经济增长效率的作用机制和区域差异具有很好的理论和实践意义。在内生经济增长理论框架下,探究产业结构升级在财政教育投入影响全要素生产率过程中的调节效应。从全国数据看,财政教育投入可以直接提高全要素生产率,我国东部和中部地区的产业结构升级弱化了财政教育投入对全要素生产率的促进作用,西部地区的产业结构升级增强了财政教育投入对全要素生产率的促进作用。在其他控制变量中,GDP增长率和城镇化水平对全要素生产率具有明显促进作用,对外开放程度、外商直接投资、金融深化和科技投入占比对全要素生产率的影响存在较大区域差异。据此提出相应对策建议。 展开更多
关键词 财政教育投入 产业结构升级 全要素生产率 半参数OP模型
下载PDF
基于迭代优化和神经网络补偿的超冗余机械臂半参数动力学模型辨识
18
作者 周宇飞 李中灿 +4 位作者 李毅 崔靖凯 贺顺锋 盛展翊 朱明超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第2期193-207,共15页
为了实现超冗余机械臂动力学模型的精确辨识,提出了一种基于迭代优化和神经网络补偿的半参数动力学模型辨识方法。首先,介绍了超冗余机械臂的动力学模型和最小参数集,建立了关节非线性摩擦模型,使用遗传算法优化回归矩阵条件数生成激励... 为了实现超冗余机械臂动力学模型的精确辨识,提出了一种基于迭代优化和神经网络补偿的半参数动力学模型辨识方法。首先,介绍了超冗余机械臂的动力学模型和最小参数集,建立了关节非线性摩擦模型,使用遗传算法优化回归矩阵条件数生成激励轨迹。然后建立了机械臂动力学模型物理可行性约束,基于迭代优化方法设计了两层循环网络对超冗余机械臂的惯性参数和关节摩擦模型进行辨识。最后,利用数据集训练BP神经网络,得到超冗余机械臂半参数动力学模型,并与多种算法进行了比较分析。实验结果表明:相较于传统的最小二乘算法和加权最小二乘算法,通过使用本文提出的辨识算法,关节辨识力矩残差均方根(Root Mean Square,RMS)之和分别提高了32.81%和23.76%,半参数动力学模型相比于全参数动力学模型力矩残差均方根之和提高了23.56%,辨识结果验证了辨识方法的有效性和优越性。 展开更多
关键词 超冗余机械臂 动力学模型辨识 迭代优化 半参数动力学模型
下载PDF
Generalized Empirical Likelihood Inference in Semiparametric Regression Model for Longitudinal Data 被引量:12
19
作者 Gao Rong LI Ping TIAN Liu Gen XUE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第12期2029-2040,共12页
In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the mode... In this paper, we consider the semiparametric regression model for longitudinal data. Due to the correlation within groups, a generalized empirical log-likelihood ratio statistic for the unknown parameters in the model is suggested by introducing the working covariance matrix. It is proved that the proposed statistic is asymptotically standard chi-squared under some suitable conditions, and hence it can be used to construct the confidence regions of the parameters. A simulation study is conducted to compare the proposed method with the generalized least squares method in terms of coverage accuracy and average lengths of the confidence intervals. 展开更多
关键词 longitudinal data semiparametric regression model empirical likelihood confidence region
原文传递
Joint semiparametric mean-covariance model in longitudinal study 被引量:3
20
作者 MAO Jie ZHU ZhongYi 《Science China Mathematics》 SCIE 2011年第1期145-164,共20页
Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decom... Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized estimating equations for the mean and correlation parameter. Kernel estimators are developed for the estimation of the nonparametric variation function. Asymptotic normality of the the resulting estimators is established. Finally, the simulation study and the real data analysis are used to illustrate the proposed approach. 展开更多
关键词 generalized estimating equation kernel estimation local linear regression modified Cholesky decomposition semiparametric varying-coefficient partially linear model
原文传递
上一页 1 2 22 下一页 到第
使用帮助 返回顶部