期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Coordinated voltage control of renewable energy power plants in weak sending-end power grid
1
作者 Yongning Chi Weihao Li +1 位作者 Qiuwei Wu Chao Liu 《Global Energy Interconnection》 2020年第4期365-374,共10页
The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive co... The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive control(MPC)for the renewable energy power plants of wind and solar power connected to a weak sending-end power grid(WSPG).Wind turbine generators(WTGs),photovoltaic arrays(PVAs),and a static synchronous compensator are coordinated to maintain voltage within a feasible range during operation.This results in the full use of the reactive power capability of WTGs and PVAs.In addition,the impact of the active power outputs of WTGs and PVAs on voltage control are considered because of the high R/X ratio of a collector system.An analytical method is used for calculating sensitivity coefficients to improve computation efficiency.A renewable energy power plant with 80 WTGs and 20 PVAs connected to a WSPG is used to verify the proposed voltage control strategy.Case studies show that the coordinated voltage control strategy can achieve good voltage control performance,which improves the voltage quality of the entire power plant. 展开更多
关键词 Coordinated voltage control Model predictive control(MPC) Renewable energy Weak sending-end power grid Wind turbine generators(WTGs) Photovoltaic arrays(PVAs) STATCOM
下载PDF
A Robust Control Strategy to Improve Transient Stability for AC-DC Interconnected Power System with Wind Farms 被引量:6
2
作者 Qian Hui Jinlu Yang +3 位作者 Xia Yang Zhe Chen Yan Li Yun Teng 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第2期259-265,共7页
In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind f... In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind farm.This paper proposes a linear parameter varying(LPV)robust feedback control method for transient stability of interconnected systems.The proposed LPV robust feedback control method uses the DC channel power control and the mechanical power in the interconnected system as the control target to improve the transient stability of the interconnected system with wind farm channel.Firstly,aiming at the strong nonlinear characteristics of the interconnected system,the power balance and the wind power output uncertainty in the transient process,the transient process is designed as a linear model of variable parameters.Then,the H∞robust output feedback controller is designed according to the LPV model.The transient stability control strategy topology and transfer function of the interconnected system are proposed.Finally,the proposed scheme is verified by an interconnected system formed by four equal-value grids through AC and DC lines in a digital simulation platform.The results show that the LPV robust feedback control model proposed in this paper has better response characteristics and transient stability control effects for interconnected systems with wind power weak sendingend system. 展开更多
关键词 AC/DC transmission interconnected power systems linear parameter varying robust control sending-end system transient stability wind power generation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部