OBJECTIVE To investigate the effects of LW-AFC,a new formula derived fromLiuwei Dihuang decoction,on gut microbiota and the behavior of learning and memory of SAMP8 mice,a mouse model of Alzheimer Disease(AD),and iden...OBJECTIVE To investigate the effects of LW-AFC,a new formula derived fromLiuwei Dihuang decoction,on gut microbiota and the behavior of learning and memory of SAMP8 mice,a mouse model of Alzheimer Disease(AD),and identify the specific intestinal microbiota correlating with cognitive ability.METHODS Morris-water maze test,novel object recognition test and shuttle-box test were conducted to observe the ability of learning and memory.16S rRNA amplicon sequencing(Illumina,San Diego,CA,USA)was employed to investigate gut microbiota.RESULTS The treatment of LW-AFC improved cognitive impairments of SAMP8 mice,including spatial learning and memory ability,active avoidance response,and object recognition memory capability.Our data indicated that there were significantly 8 increased and 12 decreased operational taxonomic units(OTUs)in the gut microbiota of SAMP8 mice compared with senescence accelerated mouse resistant 1(SAMR1) strains,the control of SAMP8 mice.The treatment of LW-AFC altered 22(16 increased and 6 decreased)OTUs in SAMP8 mice and among them,15 OTUs could be reversed by LW-AFC treatment resulting in a microbial composition similar to that of SAMR1 mice.We further showed that there were7(3 negative and 4 positive correlation)OTUs significantly correlated with all the three types of cognitive abilities,at the order level,including Bacteroidales,Clostridiales,Desulfovibrionales,CW040,and two unclassified orders.LW-AFC had influences on bacterial taxa correlated with the abilities of learning and memory in SAMP8 mice and restored them to SAMR1 mice.CONCLUSION The effects of LW-AFC on improving cognitive impairments of SAMP8 mice might be via modulating intestinal microbiome and LW-AFC could be used as a potential anti-AD agent.展开更多
Objective: To investigate the preventive treatment effects of electroacupuncture(EA) on cognitive changes and brain damage in senescence-accelerated mouse prone 8(SAMP8) mice. Methods: The 5-month-old male SAMP8...Objective: To investigate the preventive treatment effects of electroacupuncture(EA) on cognitive changes and brain damage in senescence-accelerated mouse prone 8(SAMP8) mice. Methods: The 5-month-old male SAMP8 and age-matched homologous normal aging mice(SAMR1) were adopted in this study. EA stimulation at Baihui(GV 20) and Yintang(EX-HN 3) was performed every other day for 12 weeks, 4 weeks as a course. Morris water maze test and Nissl-stained with cresyl violet were used for cognitive impairments evaluation and brain morphometric analysis. Amyloid-β(Aβ) expression in hippocampus and parietal cortex was detected by immunohistochemistry, and apoptosis was observed by TUNEL staining. Results: After 3 courses of EA preventive treatment, the escape latencies of 8-month-old SAMP8 mice in EA group were significantly shortened than those of un-pretreated SAMP8 mice. Compared with SAMR1 mice, extensive neuronal changes were visualized in the CA1 area of hippocampus in SAMP8 mice, while these pathological changes and attenuate cell loss in hippocampal CA1 area of SAMP8 mice markedly reduced after EA preventive treatment. Furthermore, Aβ expression in hippocampus and parietal cortex of SAMP8 mice decreased significantly after EA treatment, and neuronal apoptosis decreased as well. Conclusion: EA preventive treatment at GV 20 and EX-HN 3 might improve cognitive deficits and neuropathological changes in SAMP8 mice, which might be, at least in part, due to the effects of reducing brain neuronal damage, decreasing neuronal apoptosis and inhibiting Aβ-containing aggregates.展开更多
基金supported by National Science and Technology Major Project(2013ZX09508104,2012ZX09301003-002-001)
文摘OBJECTIVE To investigate the effects of LW-AFC,a new formula derived fromLiuwei Dihuang decoction,on gut microbiota and the behavior of learning and memory of SAMP8 mice,a mouse model of Alzheimer Disease(AD),and identify the specific intestinal microbiota correlating with cognitive ability.METHODS Morris-water maze test,novel object recognition test and shuttle-box test were conducted to observe the ability of learning and memory.16S rRNA amplicon sequencing(Illumina,San Diego,CA,USA)was employed to investigate gut microbiota.RESULTS The treatment of LW-AFC improved cognitive impairments of SAMP8 mice,including spatial learning and memory ability,active avoidance response,and object recognition memory capability.Our data indicated that there were significantly 8 increased and 12 decreased operational taxonomic units(OTUs)in the gut microbiota of SAMP8 mice compared with senescence accelerated mouse resistant 1(SAMR1) strains,the control of SAMP8 mice.The treatment of LW-AFC altered 22(16 increased and 6 decreased)OTUs in SAMP8 mice and among them,15 OTUs could be reversed by LW-AFC treatment resulting in a microbial composition similar to that of SAMR1 mice.We further showed that there were7(3 negative and 4 positive correlation)OTUs significantly correlated with all the three types of cognitive abilities,at the order level,including Bacteroidales,Clostridiales,Desulfovibrionales,CW040,and two unclassified orders.LW-AFC had influences on bacterial taxa correlated with the abilities of learning and memory in SAMP8 mice and restored them to SAMR1 mice.CONCLUSION The effects of LW-AFC on improving cognitive impairments of SAMP8 mice might be via modulating intestinal microbiome and LW-AFC could be used as a potential anti-AD agent.
基金Supported by the National Natureal Science Foundation of China(No.30701121)
文摘Objective: To investigate the preventive treatment effects of electroacupuncture(EA) on cognitive changes and brain damage in senescence-accelerated mouse prone 8(SAMP8) mice. Methods: The 5-month-old male SAMP8 and age-matched homologous normal aging mice(SAMR1) were adopted in this study. EA stimulation at Baihui(GV 20) and Yintang(EX-HN 3) was performed every other day for 12 weeks, 4 weeks as a course. Morris water maze test and Nissl-stained with cresyl violet were used for cognitive impairments evaluation and brain morphometric analysis. Amyloid-β(Aβ) expression in hippocampus and parietal cortex was detected by immunohistochemistry, and apoptosis was observed by TUNEL staining. Results: After 3 courses of EA preventive treatment, the escape latencies of 8-month-old SAMP8 mice in EA group were significantly shortened than those of un-pretreated SAMP8 mice. Compared with SAMR1 mice, extensive neuronal changes were visualized in the CA1 area of hippocampus in SAMP8 mice, while these pathological changes and attenuate cell loss in hippocampal CA1 area of SAMP8 mice markedly reduced after EA preventive treatment. Furthermore, Aβ expression in hippocampus and parietal cortex of SAMP8 mice decreased significantly after EA treatment, and neuronal apoptosis decreased as well. Conclusion: EA preventive treatment at GV 20 and EX-HN 3 might improve cognitive deficits and neuropathological changes in SAMP8 mice, which might be, at least in part, due to the effects of reducing brain neuronal damage, decreasing neuronal apoptosis and inhibiting Aβ-containing aggregates.