期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Automatic Road Tunnel Crack Inspection Based on Crack Area Sensing and Multiscale Semantic Segmentation
1
作者 Dingping Chen Zhiheng Zhu +1 位作者 Jinyang Fu Jilin He 《Computers, Materials & Continua》 SCIE EI 2024年第4期1679-1703,共25页
The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safetyand performing routine tunnel maintenance. The automatic and accurate detection of cracks on the su... The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safetyand performing routine tunnel maintenance. The automatic and accurate detection of cracks on the surface of roadtunnels is the key to improving the maintenance efficiency of road tunnels. Machine vision technology combinedwith a deep neural network model is an effective means to realize the localization and identification of crackdefects on the surface of road tunnels.We propose a complete set of automatic inspection methods for identifyingcracks on the walls of road tunnels as a solution to the problem of difficulty in identifying cracks during manualmaintenance. First, a set of equipment applied to the real-time acquisition of high-definition images of walls inroad tunnels is designed. Images of walls in road tunnels are acquired based on the designed equipment, whereimages containing crack defects are manually identified and selected. Subsequently, the training and validationsets used to construct the crack inspection model are obtained based on the acquired images, whereas the regionscontaining cracks and the pixels of the cracks are finely labeled. After that, a crack area sensing module is designedbased on the proposed you only look once version 7 model combined with coordinate attention mechanism (CAYOLOV7) network to locate the crack regions in the road tunnel surface images. Only subimages containingcracks are acquired and sent to the multiscale semantic segmentation module for extraction of the pixels to whichthe cracks belong based on the DeepLab V3+ network. The precision and recall of the crack region localizationon the surface of a road tunnel based on our proposed method are 82.4% and 93.8%, respectively. Moreover, themean intersection over union (MIoU) and pixel accuracy (PA) values for achieving pixel-level detection accuracyare 76.84% and 78.29%, respectively. The experimental results on the dataset show that our proposed two-stagedetection method outperforms other state-of-the-art models in crack region localization and detection. Based onour proposedmethod, the images captured on the surface of a road tunnel can complete crack detection at a speed often frames/second, and the detection accuracy can reach 0.25 mm, which meets the requirements for maintenanceof an actual project. The designed CA-YOLO V7 network enables precise localization of the area to which a crackbelongs in images acquired under different environmental and lighting conditions in road tunnels. The improvedDeepLab V3+ network based on lightweighting is able to extract crack morphology in a given region more quicklywhile maintaining segmentation accuracy. The established model combines defect localization and segmentationmodels for the first time, realizing pixel-level defect localization and extraction on the surface of road tunnelsin complex environments, and is capable of determining the actual size of cracks based on the physical coordinatesystemafter camera calibration. The trainedmodelhas highaccuracy andcanbe extendedandapplied to embeddedcomputing devices for the assessment and repair of damaged areas in different types of road tunnels. 展开更多
关键词 Road tunnel crack inspection crack area sensing multiscale semantic segmentation CA-YOLO V7 DeepLab V3+
下载PDF
APPLICATIONS OF REMOTE SENSING IN ENVIRONMENTAL INVESTIGATION AND CHANGE ANALYSIS IN THE THREE GORGES AREA
2
作者 Chen Yu, Huang Xueqiao (Institute of Mountain Disaster and Environment, the Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu) 《遥感信息》 CSCD 1990年第A02期23-24,共2页
1. INTRODUCTION The proposed Three Gorges Project, one of the biggest hydroelectric projects in the world, will dam the middle reaches of the Changjiang (Yangtze) River, the third longest river in the world, and form ... 1. INTRODUCTION The proposed Three Gorges Project, one of the biggest hydroelectric projects in the world, will dam the middle reaches of the Changjiang (Yangtze) River, the third longest river in the world, and form a large reservoir. Its impacts on environment have attracted wide attention. Entrusted by National Scientific-Technical Commission, the Chinese Academy of Sciences (CAS) was in charge of a research project on this issuse from 1984 to 1989. Tho use of remote sensing played an important role in the project considering the study area is mountainous and not convenientlv located, which makes it difficult to conduct the research onlv using conventional means. 展开更多
关键词 DATA APPLICATIONS OF REMOTE SENSING IN ENVIRONMENTAL INVESTIGATION AND CHANGE ANALYSIS IN THE THREE GORGES area
下载PDF
Resource Allocation for Uplink CSI Sensing Report in Multi-User WLAN Sensing
3
作者 Yifei Li Jilei Yan +2 位作者 Yan Long Xuming Fang Rong He 《Journal of Beijing Institute of Technology》 EI CAS 2022年第5期524-534,共11页
Sensing in wireless local area network(WLAN) gains great interests recently. In this paper we focus on the multi-user WLAN sensing problem under the existing 802.11 standards. Multiple stations perform sensing with th... Sensing in wireless local area network(WLAN) gains great interests recently. In this paper we focus on the multi-user WLAN sensing problem under the existing 802.11 standards. Multiple stations perform sensing with the access point and transmit channel state information(CSI)report simultaneously on the basis of uplink-orthogonal frequency division multiple access(OFDMA). Considering the transmission resource consumed in CSI report and the padding wastage in OFDMA based CSI report, we optimize the CSI simplification and uplink resource unit(RU)allocation jointly, aiming to balance the sensing accuracy and padding wastage performances in WLAN sensing. We propose the minimize padding maximize efficiency(MPME) algorithm to solve the problem and evaluate the performance of the proposed algorithm through extensive simulations. 展开更多
关键词 wireless local area network(WLAN)sensing channel state information(CSI)simplification padding wastage resource allocation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部