Cloud internet of things(IoT)is an emerging technology that is already impelling the daily activities of our lives.However,the enormous resources(data and physical features of things)generated from Cloud-enabled IoT s...Cloud internet of things(IoT)is an emerging technology that is already impelling the daily activities of our lives.However,the enormous resources(data and physical features of things)generated from Cloud-enabled IoT sensing devices are lacking suitable managerial approaches.Existing research surveys on Cloud IoT mainly focused on its fundamentals,definitions and layered architecture as well as security challenges.Going by the current literature,none of the existing researches is yet to provide a detailed analysis on the approaches deployed to manage the heterogeneous and dynamic resource data generated by sensor devices in the cloud-enabled IoT paradigm.Hence,to bridge this gap,the existing algorithms designed to manage resource data on various CloudloT application domains are investigated and analyzed.The emergence of CloudloT,followed by previous related survey articles in this field,which motivated the current study is presented.Furthermore,the utilization of simulation environment,highlighting the programming languages and a brief description of the simulation pack-ages adopted to design and evaluate the performance of the algorithms are examined.The utilization of diverse network communication protocols and gateways to aid resource dissemina-tion in the cloud-enabled IoT network infrastructure are also discussed.The future work as discussed in previous researches,which pave the way for future research directions in this field is also presented,and ends with concluding remarks.展开更多
Since the Internet of Things(IoT) secret information is easy to leak in data transfer,a data secure transmission model based on compressed sensing(CS) and digital watermarking technology is proposed here. Firstly,...Since the Internet of Things(IoT) secret information is easy to leak in data transfer,a data secure transmission model based on compressed sensing(CS) and digital watermarking technology is proposed here. Firstly, for node coding end, the digital watermarking technology is used to embed secret information in the conventional data carrier. Secondly, these data are reused to build the target transfer data by the CS algorithm which are called observed signals. Thirdly, these signals are transmitted to the base station through the wireless channel. After obtaining these observed signals, the decoder reconstructs the data carrier containing privacy information. Finally, the privacy information is obtained by digital watermark extraction algorithm to achieve the secret transmission of signals. By adopting the watermarking and compression sensing to hide secret information in the end of node code, the algorithm complexity and energy consumption are reduced. Meanwhile, the security of secret information is increased.The simulation results show that the method is able to accurately reconstruct the original signal and the energy consumption of the sensor node is also reduced significantly in consideration of the packet loss.展开更多
基金support of the Research Management Centre(RMC)Universiti Teknologi Malaysia with the research grant(QJ 130000.2451.07G48)We would like to express our sincere thanks to all researchers who devoted their time and knowledge to the completeness of this research project。
文摘Cloud internet of things(IoT)is an emerging technology that is already impelling the daily activities of our lives.However,the enormous resources(data and physical features of things)generated from Cloud-enabled IoT sensing devices are lacking suitable managerial approaches.Existing research surveys on Cloud IoT mainly focused on its fundamentals,definitions and layered architecture as well as security challenges.Going by the current literature,none of the existing researches is yet to provide a detailed analysis on the approaches deployed to manage the heterogeneous and dynamic resource data generated by sensor devices in the cloud-enabled IoT paradigm.Hence,to bridge this gap,the existing algorithms designed to manage resource data on various CloudloT application domains are investigated and analyzed.The emergence of CloudloT,followed by previous related survey articles in this field,which motivated the current study is presented.Furthermore,the utilization of simulation environment,highlighting the programming languages and a brief description of the simulation pack-ages adopted to design and evaluate the performance of the algorithms are examined.The utilization of diverse network communication protocols and gateways to aid resource dissemina-tion in the cloud-enabled IoT network infrastructure are also discussed.The future work as discussed in previous researches,which pave the way for future research directions in this field is also presented,and ends with concluding remarks.
基金Supported by the Foundation of Tianjin for Science and Technology Innovation(10FDZDGX00400,11ZCKFGX00900)Key Project of Educational Reform Foundation of Tianjin Municipal Education Commission(C03-0809)
文摘Since the Internet of Things(IoT) secret information is easy to leak in data transfer,a data secure transmission model based on compressed sensing(CS) and digital watermarking technology is proposed here. Firstly, for node coding end, the digital watermarking technology is used to embed secret information in the conventional data carrier. Secondly, these data are reused to build the target transfer data by the CS algorithm which are called observed signals. Thirdly, these signals are transmitted to the base station through the wireless channel. After obtaining these observed signals, the decoder reconstructs the data carrier containing privacy information. Finally, the privacy information is obtained by digital watermark extraction algorithm to achieve the secret transmission of signals. By adopting the watermarking and compression sensing to hide secret information in the end of node code, the algorithm complexity and energy consumption are reduced. Meanwhile, the security of secret information is increased.The simulation results show that the method is able to accurately reconstruct the original signal and the energy consumption of the sensor node is also reduced significantly in consideration of the packet loss.