The semi-arid regions, as climatic and ecosystem transitional zones, are the most vulnerable to global environmental change. Earlier researches indicate that the semi-arid regions are characterized by strong landatmos...The semi-arid regions, as climatic and ecosystem transitional zones, are the most vulnerable to global environmental change. Earlier researches indicate that the semi-arid regions are characterized by strong landatmosphere coupling in which soil moisture is the crucial variable in land surface processes. In this paper, we investigate the sensitivity of the sensible/latent heat fluxes to soil moisture during the growing season based on the enhanced observations at Tongyu in the Jilin province of China, a reference site of international Coordinated Energy and Water Cycle Observations Project (CEOP) in the semi-arid regions, by using a sophisticated land surface model (NCAR_CLM3.0). Comparisons between the observed and simulated sensible/latent heat fluxes indicate that the soil moisture has obvious effects on the sensible/latent heat fluxes in terms of diurnal cycle and seasonal evolution. Better representation of the soil moisture could improve the model performance to a large degree. Therefore, for the purpose of simulating the land-atmosphere interaction and predicting the climate and water resource changes in semi-arid regions, it is necessary to enhance the description of the soil moisture distribution both in the way of observation and its treatment in land surface models.展开更多
The stratification of the atmospheric surface layer(ASL)plays an important role in regulating the water vapor and heat exchange across the lake–air interface.Based on one year of data measured by the eddy covariance ...The stratification of the atmospheric surface layer(ASL)plays an important role in regulating the water vapor and heat exchange across the lake–air interface.Based on one year of data measured by the eddy covariance technique over Erhai Lake in 2015,the ASL stability(ζ)was divided into six ranges,including unstable(-1ζ<-0:1),weakly unstable(-0:1ζ<-0:01),near-neutral1(-0:01ζ<0),near-neutral2(0ζ<0:01),weakly stable(0:01ζ<0:1),and stable(0:1ζ<1).The characteristics of ASL stability conditions and factors controlling the latent(LE)and sensible heat(H)fluxes under different stability conditions were analyzed in this study.The stability conditions of Erhai Lake have noticeably seasonal and diurnal variation,with the nearneutral and(weakly)stable stratification usually occurring before July,with frequencies of 51.7%and 23.3%,respectively,but most of the(weakly)unstable stratification was observed after July,with a frequency of 59.8%.Large evaporation occurred even in stable atmospheric conditions,due to the coupled effects of the relatively larger lake–air vapor pressure difference and wind speed.The relative controls of LE and H by different atmospheric variables are largely dependent on the stability conditions.In stable and unstable ranges,LE is closely correlated with the vapor pressure difference,whereas in weakly unstable to weakly stable ranges,it is primarily controlled by wind speed.H is related to wind speed and the lake–air temperature difference under stable conditions,but shows no obvious relationship under unstable conditions.展开更多
New satellite-derived latent and sensible heat fluxes are performed by using Wind Sat wind speed, Wind Sat sea surface temperature, the European Centre for Medium-range Weather Forecasting(ECMWF) air humidity, and E...New satellite-derived latent and sensible heat fluxes are performed by using Wind Sat wind speed, Wind Sat sea surface temperature, the European Centre for Medium-range Weather Forecasting(ECMWF) air humidity, and ECMWF air temperature from 2004 to 2014. The 55 moored buoys are used to validate them by using the 30 min and 25 km collocation window. Furthermore, the objectively analyzed air-sea heat fluxes(OAFlux) products and the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis 2(NCEP2) products are also used for global comparisons. The mean biases of sensible and latent heat fluxes between Wind Sat flux results and buoy flux data are –0.39 and –8.09 W/m^2, respectively. In addition, the rootmean-square(RMS) errors of the sensible and latent heat fluxes between them are 5.53 and 24.69 W/m^2,respectively. The RMS errors of sensible and latent heat fluxes are observed to gradually increase with an increasing buoy wind speed. The difference shows different characteristics with an increasing sea surface temperature, air humidity, and air temperature. The zonal average latent fluxes have some high regions which are mainly located in the trade wind zones where strong winds carry dry air in January, and the maximum value centers are found in the eastern waters of Japan and on the US east coast. Overall, the seasonal variability is pronounced in the Indian Ocean, the Pacific Ocean, and the Atlantic Ocean. The three sensible and latent heat fluxes have similar latitudinal dependencies; however, some differences are found in some local regions.展开更多
A comparison between simulated land surface fluxes and observed eddy covariance (EC) measurements was conducted to validate Integrated Biosphere Simulator (IBIS) at Tongyu field observation station (44°25'N...A comparison between simulated land surface fluxes and observed eddy covariance (EC) measurements was conducted to validate Integrated Biosphere Simulator (IBIS) at Tongyu field observation station (44°25'N, 122°52'E) in Jilin Province, China. Results showed that the IBIS model could reproduce net ecosystem CO2 exchange (NEE), sensible and latent heat fluxes reasonably, as indicated by correlation coefficients exceeding the significant level of 0.05. It was also evident that the NEE and sensible heat fluxes were characterized by diurnal and seasonal variation both in the grassland and the cropland ecosystems, while the latent heat fluxes correlated with evapotranspiration, only took on the diurnal variation during the growing season. Moreover, both sensible heat fluxes and the latent heat fluxes were larger in the cropland ecosystem than that in the degraded grassland ecosystem. This different characteristic was possibly correlated with vegetation growing situation in the two kinds of ecosystems. A close agreement between observation and simulation on NEE, sensible heat fluxes and latent heat flux was obtained both in the degraded grassland and the cropland ecosystems. In addition, the annual NEE in the model was overestimated by 23.21% at the grassland and 27.43% at the cropland, sensible heat flux with corresponding 9.90% and 11.98%, respectively, and the annual latent heat flux was underestimated by 4.63% and 3.48%, respectively.展开更多
Evapotranspiration acts an important role in hydrologic cycle and water resources planning. But the estimation issue still remains until nowadays. This research attempts to make clear this problem by the following way...Evapotranspiration acts an important role in hydrologic cycle and water resources planning. But the estimation issue still remains until nowadays. This research attempts to make clear this problem by the following way. In a humid region, by applying the Bowen ratio concept and optimum procedure on the soil surface, sensible and latent heat fluxes are estimated using net radiation (Rn) and heat flux into the ground (G). The method uses air temperature and humidity at a single height by reciprocally determining the soil surface temperature (Ts) and the relative humidity (rehs). This feature can be remarkably extended to the utilization. The validity of the method is confirmed by comparing of observed and estimated latent (lE) and sensible heat flux (H) using the eddy covariance method. The hourly change of the lE, H, Ts and rehs on the soil surface, yearly change of lE and H and relationship of estimated lE and H versus observed are clarified. Furthermore, monthly evapotranspiration is estimated from the lE. The research was conducted using hourly data of FLUXNET at a site of Japan, three sites of the United States and two sites of Europe in humid regions having over 1000 mm of annual precipitation.展开更多
This paper describes results of the fluxes of momentum , sensible heat and latent heat for the West Pacific Tropical Ocean Area ( 127 ° E - 150 ° E , 5 ° N -3 ° S ). The data were collected by the ...This paper describes results of the fluxes of momentum , sensible heat and latent heat for the West Pacific Tropical Ocean Area ( 127 ° E - 150 ° E , 5 ° N -3 ° S ). The data were collected by the small tethered balloon sounding system over this ocean area including 6 continuous stations (140 ° E. 0 ° ; 145 ° E, 0 ° ; 150 ° E, 0 ° ; 140° E, 5 ° N; 145 ° E, 5° N and 150 ° E, 5 ° N) from 11 October to 15 December, 1986 . These fluxes were calculated by the semiempirical flux-profile relationships of Monin-Obukhov similarity theory using these observed data. The results show that for this tropical ocean area the drag coefficient CD is equal to (1.53 ± 0.25) × 10 3 and the daily mean latent flux Hl is greater than its daily mean sensible flux HV by a factor of about 9.展开更多
The South China Sea (SCS) is significantly influenced by El Nino and the Southern Oscillation (ENSO) through ENSO-driven atmospheric and oceanic changes. We analyzed measurements made from 1960 to 2004 to investig...The South China Sea (SCS) is significantly influenced by El Nino and the Southern Oscillation (ENSO) through ENSO-driven atmospheric and oceanic changes. We analyzed measurements made from 1960 to 2004 to investigate the interannual variability of the latent and sensible heat fluxes over the SCS. Both the interannual variations of latent and sensible heat fluxes are closely related to ENSO events. The low-pass mean heat flux anomalies vary in a coherent manner with the low-pass mean Southern Oscillation Index (SOI). Time lags between the heat flux anomalies and the SST anomalies were also studied. We found that latent heat flux anomalies have a minimum value around January of the year following El Nino events. During and after the mature phase of E1 Nino, a change of atmospheric circulation alters the local SCS near-surface humidity and the monsoon winds. During the mature phase of E1 Nino, the wind speed decreases over the entire sea, and the air-sea specific humidity difference anomalies decreases in the northern SCS and increases in the southern SCS. Thus, a combined effect of wind speed anomalies and air-sea specific humidity difference anomalies results in the latent heat flux anomalies attaining minimum levels around January of the year following an E1 Nino year.展开更多
The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a re...The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.展开更多
The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the sprin...The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the spring sensible heat flux over Northwest China was greater during the period from the late 1970s to the 1990s than during the period from the 1960s to the mid-1970s. The summer sensible heat flux was smaller in the late 1980s through the 1990s than it was in the 1970s through the early 1980s. Both the spring and summer land-air temperature differences over Northwest China displayed an obvious interdecadal increase in the late 1970s. Both the spring and summer surface wind speeds experienced an obvious interdecadal weakening in the late 1970s. The change in the surface wind speed played a more important role in the interdecadal variations in sensible heat flux during the summer, whereas the change in the land-air temperature difference was more important for the interdecadal variations in sensible heat flux in the spring. This difference was related to seasonal changes in the mean land-air temperature difference and the surface wind speed. Further analysis indicated that the increase in the spring land surface temperature in Northwest China was related to an increase in surface net radiation.展开更多
Surface energy fluxes were measured using Bowen-Ratio Energy Balance technique (BREB) and eddy correlation system at Luancheng of Hebei Province, on the North China Plain from 1999 to 2001. Average diurnal variation o...Surface energy fluxes were measured using Bowen-Ratio Energy Balance technique (BREB) and eddy correlation system at Luancheng of Hebei Province, on the North China Plain from 1999 to 2001. Average diurnal variation of surface energy fluxes and CO2 flux for maize showed the inverse “U” type. The average peak fluxes did not appear at noon, but after noon. The average peak CO2 flux was about 1.65 mg m-2 s-1. Crop water use efficiency (WUE) increased quickly in the morning, stabilized after 10:00 and decreased quickly after 15:00 with no evident peak value. The ratio of latent heat flux (λE) to net solar radiation (Rn) was always higher than 70% during winter wheat and maize seasons. The seasonal average ratio of sensible heat flux (H) divided byR n stayed at about 15% above the field surface; the seasonal average ratio of conductive heat flux (G) divided by Rn varied between 5% and 13%, and the averageG/R> n from the wheat canopy was evidently higher than that from the maize canopy. The evaporative fraction (EF) is correlated to the Bowen ratio in a reverse function.EF for winter wheat increased quickly during that revival stage, after the stage, it gradually stabilized to 1.0, and fluctuated around 1.0. EF for maize also fluctuated around 1.0 before the later grain filling stage, and decreased after that stage.展开更多
S:Understanding how surface energy fluxes respond to environmental variables and how their components vary on daily and seasonal temporal scales are critical for understanding the ecological process of wetland ecosyst...S:Understanding how surface energy fluxes respond to environmental variables and how their components vary on daily and seasonal temporal scales are critical for understanding the ecological process of wetland ecosystem. In view of the fact that studies on surface energy flux over mire in China have been very limited, we have initiated a long-term latent and sensible heat flux (two main components of the surface energy balance) observation over mire in the Sanjiang Plain from June to October in 2004 with the eddy covariance technique. Results showed that the latent and sensible heat flux had large seasonal and diurnal variation during the period of measurement. Generally, latent heat flux between the mire wetland and the atmosphere reached the maximum value in June and then gradually decreased from June to October, whose daily mean fluxes were 9.83,8.00,7.33, 4.82 and 2.04 MJ/(m^2·d), respectively. By comparison, sensible heat flux changed unnoticeably with season change from June to October, which were 1.47,0.88,1.75, 1.61,1.33 MJ/(m^2·d) respectively. The diurnal variation of both latent and sensible heat flux varied noticeably within a day. After the sunrise, the latent and sensible heat flux increased and reached the maximum at noon (11:00-13:00). Then they decreased gradually and reached the minimum value during the nighttime. The patterns of temporal variation in latent and sensible heat flux were significantly controlled by environmental factors. The latent heat flux was linearly dependent on net radiation and increased with increasing vapour pressure deficit until the vapour pressure deficit surpassed 11 hPa. Wind speed effect on latent heat flux was more complicated and, in general, showed a positive correlation between them in daytime. The sensible heat flux was controlled mainly by air temperature difference between the land surface and the overlying air. However, when the temperature difference was larger than 0.3 ℃, it had no effect on the sensible heat flux. The study showed up the temporal variation of latent and sensible heat flux and how the environmental factors affected them.展开更多
Variation in the location of the South Asian High (SAH) in early boreal summer is strongly influenced by elevated surface heating from the Tibetan Plateau (TP) and the Iranian Plateau (IP). Based on observationa...Variation in the location of the South Asian High (SAH) in early boreal summer is strongly influenced by elevated surface heating from the Tibetan Plateau (TP) and the Iranian Plateau (IP). Based on observational and ERA-Interim data, diagnostic analyses reveal that the interannual northwestward-southeastwaxd (NW-SE) shift of the SAH in June is more closely correlated with the synergistic effect of concurrent surface thermal anomalies over the TP and IP than with each single surface thermal anomaly over either plateau from the preceding May. Concurrent surface thermal anomalies over these two plateaus in May are characterized by a negative correlation between sensible heat flux over most parts of the TP (TPSH) and IP (IPSH). This anomaly pattern can persist till June and influences the NW-SE shift of the SAH in June through the release of latent heat (LH) over northeastern India. When the IPSH is stronger (weaker) and the TPSH is weaker (stronger) than normal in May, an anomalous cyclone (anticyclone) appears over northern India at 850 hPa, which is accompanied by the ascent (descent) of air and anomalous convergence (divergence) of moisture flux in May and June. Therefore, the LH release over northeastern India is strengthened (weakened) and the vertical gradient of apparent heat source is decreased (increased) in the upper troposphere, which is responsible for the northwestward (southeastward) shift of the SAH in June.展开更多
Using data from the National Center for Environmental Prediction (NCEP), the paper analyzed the surface latent heat flux (SLHF) variations for five inland earthquakes occurred in some lake area, moist area and ari...Using data from the National Center for Environmental Prediction (NCEP), the paper analyzed the surface latent heat flux (SLHF) variations for five inland earthquakes occurred in some lake area, moist area and arid area of China during recent years. We used the SLHF daily and monthly data to differentiate the global and seasonal variability from the transient local anomalies. The temporal scale of the observed variations is 1-2 months before and after the earthquakes, and spatial scale is about 10°×10°. The result suggests that the SLHFs adjacent the epicenters all are anomalous high value (〉μ+2σ) 8-30 days before the shocks as compared with past several years of data. Different from the abnormal meteorological phenomenon, the distribution of the anomalies was isolated and local, which usually occurred in the epicenter and its adjacent area, or along the fault lines. The increase of SLHF was tightly related with the season which the earthquake occurs in; the maximal (125 W/m^2, Pu'er earthquake) and minimal (25 W/m^2, Gaize earthquake) anomalies were in summer and winter, respectively. The abundant surface water and groundwater in the epicenter and its adjacent region can provide necessary condition for the change of SLHF. To further confirm the reliability of SLHF anomaly, it is necessary to explore its physical mechanism in depth by more earthquake cases.展开更多
Using the observed monthly precipitation and NCEP (National Centers for Environmental Prediction) reanalysis surface ?ux data from 1951–2000, the connections between the seasonal SSHNF (Surface Sensible Heat Net Fl...Using the observed monthly precipitation and NCEP (National Centers for Environmental Prediction) reanalysis surface ?ux data from 1951–2000, the connections between the seasonal SSHNF (Surface Sensible Heat Net Flux) over the Asian continent and the regional summer precipitation of China were examined. The patterns of collective and individual correlations were identi?ed. The results indicate that the response of the regional summer precipitation of China to the seasonal SSHNF over the study area varies according to region and season. The interannual variability of summer precipitation anomalies over Xinjiang, the northernmost Northeast China, and the North China Plain are most sensitive to the anomaly of the seasonal SSHNF. There are signi?cant collective correlations between the interannual anomalies of the seasonal SSHNF and summer precipitation over these regions. In contrast, the Southeast Tibetan Plateau, Huaihe River Valley, and surrounding areas exhibit the least signi?cant correlation. Signi?cant individual correlations exist between the summer precipitation over the southernmost Northeast China, East Inner Mongolia, South of the Yangtze River and South China and the seasonal SSHNF in certain seasons over the following areas: near Lake Baikal and Lake Balkhash, near Da Hinggan Mountains and Xiao Hinggan Mountains, as well as the Tibetan Plateau.展开更多
The accurate representation of surface characteristic is an important process to simulate surface energy and water flux in land-atmosphere boundary layer.Coupling crop growth model in land surface model is an importan...The accurate representation of surface characteristic is an important process to simulate surface energy and water flux in land-atmosphere boundary layer.Coupling crop growth model in land surface model is an important method to accurately express the surface characteristics and biophysical processes in farmland.However,the previous work mainly focused on crops in single cropping system,less work was done in multiple cropping systems.This article described how to modify the sub-model in the SiBcrop to realize the accuracy simulation of leaf area index(LAI),latent heat flux(LHF)and sensible heat flux(SHF)of winter wheat growing in double cropping system in the North China Plain(NCP).The seeding date of winter wheat was firstly reset according to the actual growing environment in the NCP.The phenophases,LAI and heat fluxes in 2004–2006 at Yucheng Station,Shandong Province,China were used to calibrate the model.The validations of LHF and SHF were based on the measurements at Yucheng Station in 2007–2010 and at Guantao Station,Hebei Province,China in 2009–2010.The results showed the significant accuracy of the calibrated model in simulating these variables,with which the R2,root mean square error(RMSE)and index of agreement(IOA)between simulated and observed variables were obviously improved than the original code.The sensitivities of the above variables to seeding date were also displayed to further explain the simulation error of the SiBcrop Model.Overall,the research results indicated the modified SiBcrop Model can be applied to simulate the growth and flux process of winter wheat growing in double cropping system in the NCP.展开更多
Surface energy budget components(such as net radiation flux,sensible heat flux,latent heat flux and soil heat flux)at multiple temporal scales have significant meaning for understanding the energy and water cycle over...Surface energy budget components(such as net radiation flux,sensible heat flux,latent heat flux and soil heat flux)at multiple temporal scales have significant meaning for understanding the energy and water cycle over the Tibetan Plateau(TP).In the framework of ESA-MOST Dragon Programme 4,the surface energy balance system(SEBS)was tested and used to derive surface heat fluxes at different temporal scales over the TP by a combination use of geostationary satellite(FY-2 C)data,polar orbiting satellite(SPOT/VGT,Terra/MODIS)data and ITPCAS forcing data.The validation results show there is a good agreement between derived heat fluxes and in situ measurements from Third Pole Environment Observation and Research Platform(TPEORP),which means the feasibility to derive surface heat fluxes over heterogeneous landscapes by a combination use of geostationary and polar orbiting satellite data in SEBS.The diurnal,seasonal and inter-annual variation characteristics were also clearly identified through analyses of derived turbulent fluxes.展开更多
temporal variations and geographical distributions of sensible and latent heat fluxes over the Pacific were calculated and analyzed by using the Goddard Earth Observing System (GEOS) - four-dimensional Data Assimilati...temporal variations and geographical distributions of sensible and latent heat fluxes over the Pacific were calculated and analyzed by using the Goddard Earth Observing System (GEOS) - four-dimensional Data Assimilation System (DAS). The calculated results showed that the heat flux over the northwestern Pacific varied obviously with seasons, but over the other ocean areas of the Pacific O cean there were no such phenomena. There was always the highest Value region of latent heat fluxes over the Pacific Ocean, but the values of sensible heat fluxes were often very small except over the ocean area north of 20°N and there was not highest value region at all. The latent heat fluxes had different distribu tions with longitude in different latitudes. And the variations of latent heat fluxes with latitude were not the same in different longitude and also it varied with seasons.展开更多
The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000. While ...The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000. While the seasonal variation in sensible heat flux is found to be consistent between station observations and the two reanalysis datasets, both land-air temperatures difference and surface wind speed show remarkable systematic differences. The sensible heat flux displays obvious interdecadal variability that is season-dependent. In the ERA-40 data, the sensible heat flux in spring, fall, and winter shows interdecadal variations that are similar to observations. In the NCEP-NCAR reanalysis data, sensible heat flux variations are inconsistent with and sometimes even opposite to observations. While surface wind speeds from the NCEP-NCAR reanalysis data show interdecadal changes consistent with station observations, variations in land-air temperature difference differ greatly from the observed dataset. In terms of land-air temperature difference and surface wind speed, almost no consistency with observations can be identified in the ERA-40 data, apart from the land-air temperature difference in fall and winter. These inconsistencies pose a major obstacle to the application in climate studies of surface sensible heat flux derived from reanalysis data.展开更多
Based on previous research on sensible heat flux, we investigate it from different aspects using GAME/Tibet data measured during 6 June–13 September, 1998. This work consists of the derivation of the surface heat flu...Based on previous research on sensible heat flux, we investigate it from different aspects using GAME/Tibet data measured during 6 June–13 September, 1998. This work consists of the derivation of the surface heat flux equation, analysis on counter-gradient heat transference, comparison between two different methods to compute the sensible heat flux, and investigation on the calculation scheme of sensible heat flux in the Simple Biosphere model 2 (SiB2) with relevant simulation. By improving two previous formulations, an integrated formulation for calculating surface heat flux is given. Secondly, using the measured data, the counter-gradient heat flux is clarified, leading to the fact that buoyancy plays an important role in the sensible heat transfer process. It is concluded that (1) energy imbalance is a common phenomenon resulting from the use of the traditional closure scheme on the heterogeneous underlying surface because the measured ensemble heat fluxes by eddy correlation contain the effect of nonlocal parcel movements; and (2) nonlocal parcel movement deserves more attention in any future heat flux study.展开更多
Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of t...Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.展开更多
基金supported by National Key Basic Research Program of China (GrantNo. 2006CB400500)National Natural Science Founda-tion of China under Grant Nos. 40775050, 40405014Knowledge Innovation Project of Chinese Academy Sci-ences (IAP07210).
文摘The semi-arid regions, as climatic and ecosystem transitional zones, are the most vulnerable to global environmental change. Earlier researches indicate that the semi-arid regions are characterized by strong landatmosphere coupling in which soil moisture is the crucial variable in land surface processes. In this paper, we investigate the sensitivity of the sensible/latent heat fluxes to soil moisture during the growing season based on the enhanced observations at Tongyu in the Jilin province of China, a reference site of international Coordinated Energy and Water Cycle Observations Project (CEOP) in the semi-arid regions, by using a sophisticated land surface model (NCAR_CLM3.0). Comparisons between the observed and simulated sensible/latent heat fluxes indicate that the soil moisture has obvious effects on the sensible/latent heat fluxes in terms of diurnal cycle and seasonal evolution. Better representation of the soil moisture could improve the model performance to a large degree. Therefore, for the purpose of simulating the land-atmosphere interaction and predicting the climate and water resource changes in semi-arid regions, it is necessary to enhance the description of the soil moisture distribution both in the way of observation and its treatment in land surface models.
基金supported by the National Key Research and Development Program of China (No. 2017YFC1502101)National Natural Science Foundation of China (Nos. 91537212 and 41775018)。
文摘The stratification of the atmospheric surface layer(ASL)plays an important role in regulating the water vapor and heat exchange across the lake–air interface.Based on one year of data measured by the eddy covariance technique over Erhai Lake in 2015,the ASL stability(ζ)was divided into six ranges,including unstable(-1ζ<-0:1),weakly unstable(-0:1ζ<-0:01),near-neutral1(-0:01ζ<0),near-neutral2(0ζ<0:01),weakly stable(0:01ζ<0:1),and stable(0:1ζ<1).The characteristics of ASL stability conditions and factors controlling the latent(LE)and sensible heat(H)fluxes under different stability conditions were analyzed in this study.The stability conditions of Erhai Lake have noticeably seasonal and diurnal variation,with the nearneutral and(weakly)stable stratification usually occurring before July,with frequencies of 51.7%and 23.3%,respectively,but most of the(weakly)unstable stratification was observed after July,with a frequency of 59.8%.Large evaporation occurred even in stable atmospheric conditions,due to the coupled effects of the relatively larger lake–air vapor pressure difference and wind speed.The relative controls of LE and H by different atmospheric variables are largely dependent on the stability conditions.In stable and unstable ranges,LE is closely correlated with the vapor pressure difference,whereas in weakly unstable to weakly stable ranges,it is primarily controlled by wind speed.H is related to wind speed and the lake–air temperature difference under stable conditions,but shows no obvious relationship under unstable conditions.
基金The National Natural Science Foundation of China under contract No.41576171
文摘New satellite-derived latent and sensible heat fluxes are performed by using Wind Sat wind speed, Wind Sat sea surface temperature, the European Centre for Medium-range Weather Forecasting(ECMWF) air humidity, and ECMWF air temperature from 2004 to 2014. The 55 moored buoys are used to validate them by using the 30 min and 25 km collocation window. Furthermore, the objectively analyzed air-sea heat fluxes(OAFlux) products and the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis 2(NCEP2) products are also used for global comparisons. The mean biases of sensible and latent heat fluxes between Wind Sat flux results and buoy flux data are –0.39 and –8.09 W/m^2, respectively. In addition, the rootmean-square(RMS) errors of the sensible and latent heat fluxes between them are 5.53 and 24.69 W/m^2,respectively. The RMS errors of sensible and latent heat fluxes are observed to gradually increase with an increasing buoy wind speed. The difference shows different characteristics with an increasing sea surface temperature, air humidity, and air temperature. The zonal average latent fluxes have some high regions which are mainly located in the trade wind zones where strong winds carry dry air in January, and the maximum value centers are found in the eastern waters of Japan and on the US east coast. Overall, the seasonal variability is pronounced in the Indian Ocean, the Pacific Ocean, and the Atlantic Ocean. The three sensible and latent heat fluxes have similar latitudinal dependencies; however, some differences are found in some local regions.
基金This paper was supported by the National Basic Research Program of China (2006CB400506).
文摘A comparison between simulated land surface fluxes and observed eddy covariance (EC) measurements was conducted to validate Integrated Biosphere Simulator (IBIS) at Tongyu field observation station (44°25'N, 122°52'E) in Jilin Province, China. Results showed that the IBIS model could reproduce net ecosystem CO2 exchange (NEE), sensible and latent heat fluxes reasonably, as indicated by correlation coefficients exceeding the significant level of 0.05. It was also evident that the NEE and sensible heat fluxes were characterized by diurnal and seasonal variation both in the grassland and the cropland ecosystems, while the latent heat fluxes correlated with evapotranspiration, only took on the diurnal variation during the growing season. Moreover, both sensible heat fluxes and the latent heat fluxes were larger in the cropland ecosystem than that in the degraded grassland ecosystem. This different characteristic was possibly correlated with vegetation growing situation in the two kinds of ecosystems. A close agreement between observation and simulation on NEE, sensible heat fluxes and latent heat flux was obtained both in the degraded grassland and the cropland ecosystems. In addition, the annual NEE in the model was overestimated by 23.21% at the grassland and 27.43% at the cropland, sensible heat flux with corresponding 9.90% and 11.98%, respectively, and the annual latent heat flux was underestimated by 4.63% and 3.48%, respectively.
文摘Evapotranspiration acts an important role in hydrologic cycle and water resources planning. But the estimation issue still remains until nowadays. This research attempts to make clear this problem by the following way. In a humid region, by applying the Bowen ratio concept and optimum procedure on the soil surface, sensible and latent heat fluxes are estimated using net radiation (Rn) and heat flux into the ground (G). The method uses air temperature and humidity at a single height by reciprocally determining the soil surface temperature (Ts) and the relative humidity (rehs). This feature can be remarkably extended to the utilization. The validity of the method is confirmed by comparing of observed and estimated latent (lE) and sensible heat flux (H) using the eddy covariance method. The hourly change of the lE, H, Ts and rehs on the soil surface, yearly change of lE and H and relationship of estimated lE and H versus observed are clarified. Furthermore, monthly evapotranspiration is estimated from the lE. The research was conducted using hourly data of FLUXNET at a site of Japan, three sites of the United States and two sites of Europe in humid regions having over 1000 mm of annual precipitation.
文摘This paper describes results of the fluxes of momentum , sensible heat and latent heat for the West Pacific Tropical Ocean Area ( 127 ° E - 150 ° E , 5 ° N -3 ° S ). The data were collected by the small tethered balloon sounding system over this ocean area including 6 continuous stations (140 ° E. 0 ° ; 145 ° E, 0 ° ; 150 ° E, 0 ° ; 140° E, 5 ° N; 145 ° E, 5° N and 150 ° E, 5 ° N) from 11 October to 15 December, 1986 . These fluxes were calculated by the semiempirical flux-profile relationships of Monin-Obukhov similarity theory using these observed data. The results show that for this tropical ocean area the drag coefficient CD is equal to (1.53 ± 0.25) × 10 3 and the daily mean latent flux Hl is greater than its daily mean sensible flux HV by a factor of about 9.
基金Supported by the National Basic Research Program of China under (No. 973-2007CB411807)the National High Technology Development Project (No.863-2006AA09Z140)the National Science Foundation under (No. 40506024)
文摘The South China Sea (SCS) is significantly influenced by El Nino and the Southern Oscillation (ENSO) through ENSO-driven atmospheric and oceanic changes. We analyzed measurements made from 1960 to 2004 to investigate the interannual variability of the latent and sensible heat fluxes over the SCS. Both the interannual variations of latent and sensible heat fluxes are closely related to ENSO events. The low-pass mean heat flux anomalies vary in a coherent manner with the low-pass mean Southern Oscillation Index (SOI). Time lags between the heat flux anomalies and the SST anomalies were also studied. We found that latent heat flux anomalies have a minimum value around January of the year following El Nino events. During and after the mature phase of E1 Nino, a change of atmospheric circulation alters the local SCS near-surface humidity and the monsoon winds. During the mature phase of E1 Nino, the wind speed decreases over the entire sea, and the air-sea specific humidity difference anomalies decreases in the northern SCS and increases in the southern SCS. Thus, a combined effect of wind speed anomalies and air-sea specific humidity difference anomalies results in the latent heat flux anomalies attaining minimum levels around January of the year following an E1 Nino year.
文摘The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.
基金supported by the National Natural Science Foundation of China (Grant No. 40730952)the National Basic Research Program of China (Grant No. 2009CB421405)the Program of Knowledge Innovation for the third period, the Chinese Academy of Sciences (Grant No. KZCX2-YW-220), and IAP07414
文摘The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the spring sensible heat flux over Northwest China was greater during the period from the late 1970s to the 1990s than during the period from the 1960s to the mid-1970s. The summer sensible heat flux was smaller in the late 1980s through the 1990s than it was in the 1970s through the early 1980s. Both the spring and summer land-air temperature differences over Northwest China displayed an obvious interdecadal increase in the late 1970s. Both the spring and summer surface wind speeds experienced an obvious interdecadal weakening in the late 1970s. The change in the surface wind speed played a more important role in the interdecadal variations in sensible heat flux during the summer, whereas the change in the land-air temperature difference was more important for the interdecadal variations in sensible heat flux in the spring. This difference was related to seasonal changes in the mean land-air temperature difference and the surface wind speed. Further analysis indicated that the increase in the spring land surface temperature in Northwest China was related to an increase in surface net radiation.
基金National Natural Science Foundation of China, No.40071008No.49890330+1 种基金 Academician Agricultural Water-saving Foundation, Hebei Province of China, No. 01220703D Special Fund for Major State Basic Research Project, No. CXIOG-C003-03
文摘Surface energy fluxes were measured using Bowen-Ratio Energy Balance technique (BREB) and eddy correlation system at Luancheng of Hebei Province, on the North China Plain from 1999 to 2001. Average diurnal variation of surface energy fluxes and CO2 flux for maize showed the inverse “U” type. The average peak fluxes did not appear at noon, but after noon. The average peak CO2 flux was about 1.65 mg m-2 s-1. Crop water use efficiency (WUE) increased quickly in the morning, stabilized after 10:00 and decreased quickly after 15:00 with no evident peak value. The ratio of latent heat flux (λE) to net solar radiation (Rn) was always higher than 70% during winter wheat and maize seasons. The seasonal average ratio of sensible heat flux (H) divided byR n stayed at about 15% above the field surface; the seasonal average ratio of conductive heat flux (G) divided by Rn varied between 5% and 13%, and the averageG/R> n from the wheat canopy was evidently higher than that from the maize canopy. The evaporative fraction (EF) is correlated to the Bowen ratio in a reverse function.EF for winter wheat increased quickly during that revival stage, after the stage, it gradually stabilized to 1.0, and fluctuated around 1.0. EF for maize also fluctuated around 1.0 before the later grain filling stage, and decreased after that stage.
文摘S:Understanding how surface energy fluxes respond to environmental variables and how their components vary on daily and seasonal temporal scales are critical for understanding the ecological process of wetland ecosystem. In view of the fact that studies on surface energy flux over mire in China have been very limited, we have initiated a long-term latent and sensible heat flux (two main components of the surface energy balance) observation over mire in the Sanjiang Plain from June to October in 2004 with the eddy covariance technique. Results showed that the latent and sensible heat flux had large seasonal and diurnal variation during the period of measurement. Generally, latent heat flux between the mire wetland and the atmosphere reached the maximum value in June and then gradually decreased from June to October, whose daily mean fluxes were 9.83,8.00,7.33, 4.82 and 2.04 MJ/(m^2·d), respectively. By comparison, sensible heat flux changed unnoticeably with season change from June to October, which were 1.47,0.88,1.75, 1.61,1.33 MJ/(m^2·d) respectively. The diurnal variation of both latent and sensible heat flux varied noticeably within a day. After the sunrise, the latent and sensible heat flux increased and reached the maximum at noon (11:00-13:00). Then they decreased gradually and reached the minimum value during the nighttime. The patterns of temporal variation in latent and sensible heat flux were significantly controlled by environmental factors. The latent heat flux was linearly dependent on net radiation and increased with increasing vapour pressure deficit until the vapour pressure deficit surpassed 11 hPa. Wind speed effect on latent heat flux was more complicated and, in general, showed a positive correlation between them in daytime. The sensible heat flux was controlled mainly by air temperature difference between the land surface and the overlying air. However, when the temperature difference was larger than 0.3 ℃, it had no effect on the sensible heat flux. The study showed up the temporal variation of latent and sensible heat flux and how the environmental factors affected them.
基金supported by the National Natural Science Foundation of China (Grant Nos.91437219,41275075 and 41175005)the National Basic Research Program of China (Grant No.2013CB430203)
文摘Variation in the location of the South Asian High (SAH) in early boreal summer is strongly influenced by elevated surface heating from the Tibetan Plateau (TP) and the Iranian Plateau (IP). Based on observational and ERA-Interim data, diagnostic analyses reveal that the interannual northwestward-southeastwaxd (NW-SE) shift of the SAH in June is more closely correlated with the synergistic effect of concurrent surface thermal anomalies over the TP and IP than with each single surface thermal anomaly over either plateau from the preceding May. Concurrent surface thermal anomalies over these two plateaus in May are characterized by a negative correlation between sensible heat flux over most parts of the TP (TPSH) and IP (IPSH). This anomaly pattern can persist till June and influences the NW-SE shift of the SAH in June through the release of latent heat (LH) over northeastern India. When the IPSH is stronger (weaker) and the TPSH is weaker (stronger) than normal in May, an anomalous cyclone (anticyclone) appears over northern India at 850 hPa, which is accompanied by the ascent (descent) of air and anomalous convergence (divergence) of moisture flux in May and June. Therefore, the LH release over northeastern India is strengthened (weakened) and the vertical gradient of apparent heat source is decreased (increased) in the upper troposphere, which is responsible for the northwestward (southeastward) shift of the SAH in June.
文摘Using data from the National Center for Environmental Prediction (NCEP), the paper analyzed the surface latent heat flux (SLHF) variations for five inland earthquakes occurred in some lake area, moist area and arid area of China during recent years. We used the SLHF daily and monthly data to differentiate the global and seasonal variability from the transient local anomalies. The temporal scale of the observed variations is 1-2 months before and after the earthquakes, and spatial scale is about 10°×10°. The result suggests that the SLHFs adjacent the epicenters all are anomalous high value (〉μ+2σ) 8-30 days before the shocks as compared with past several years of data. Different from the abnormal meteorological phenomenon, the distribution of the anomalies was isolated and local, which usually occurred in the epicenter and its adjacent area, or along the fault lines. The increase of SLHF was tightly related with the season which the earthquake occurs in; the maximal (125 W/m^2, Pu'er earthquake) and minimal (25 W/m^2, Gaize earthquake) anomalies were in summer and winter, respectively. The abundant surface water and groundwater in the epicenter and its adjacent region can provide necessary condition for the change of SLHF. To further confirm the reliability of SLHF anomaly, it is necessary to explore its physical mechanism in depth by more earthquake cases.
文摘Using the observed monthly precipitation and NCEP (National Centers for Environmental Prediction) reanalysis surface ?ux data from 1951–2000, the connections between the seasonal SSHNF (Surface Sensible Heat Net Flux) over the Asian continent and the regional summer precipitation of China were examined. The patterns of collective and individual correlations were identi?ed. The results indicate that the response of the regional summer precipitation of China to the seasonal SSHNF over the study area varies according to region and season. The interannual variability of summer precipitation anomalies over Xinjiang, the northernmost Northeast China, and the North China Plain are most sensitive to the anomaly of the seasonal SSHNF. There are signi?cant collective correlations between the interannual anomalies of the seasonal SSHNF and summer precipitation over these regions. In contrast, the Southeast Tibetan Plateau, Huaihe River Valley, and surrounding areas exhibit the least signi?cant correlation. Signi?cant individual correlations exist between the summer precipitation over the southernmost Northeast China, East Inner Mongolia, South of the Yangtze River and South China and the seasonal SSHNF in certain seasons over the following areas: near Lake Baikal and Lake Balkhash, near Da Hinggan Mountains and Xiao Hinggan Mountains, as well as the Tibetan Plateau.
基金This study was supported by the National Natural Science Foundation of China(41801020.41901128)the China Postdoctoral Science Foundation(2016M601115).We also appreciate the advices from Jiangsu Academy ofAgricultural Sciences,China.
文摘The accurate representation of surface characteristic is an important process to simulate surface energy and water flux in land-atmosphere boundary layer.Coupling crop growth model in land surface model is an important method to accurately express the surface characteristics and biophysical processes in farmland.However,the previous work mainly focused on crops in single cropping system,less work was done in multiple cropping systems.This article described how to modify the sub-model in the SiBcrop to realize the accuracy simulation of leaf area index(LAI),latent heat flux(LHF)and sensible heat flux(SHF)of winter wheat growing in double cropping system in the North China Plain(NCP).The seeding date of winter wheat was firstly reset according to the actual growing environment in the NCP.The phenophases,LAI and heat fluxes in 2004–2006 at Yucheng Station,Shandong Province,China were used to calibrate the model.The validations of LHF and SHF were based on the measurements at Yucheng Station in 2007–2010 and at Guantao Station,Hebei Province,China in 2009–2010.The results showed the significant accuracy of the calibrated model in simulating these variables,with which the R2,root mean square error(RMSE)and index of agreement(IOA)between simulated and observed variables were obviously improved than the original code.The sensitivities of the above variables to seeding date were also displayed to further explain the simulation error of the SiBcrop Model.Overall,the research results indicated the modified SiBcrop Model can be applied to simulate the growth and flux process of winter wheat growing in double cropping system in the NCP.
基金supported by CLIMATE-TPE(ID:32070)in the framework of the ESA-MOST Dragon 4 Programme。
文摘Surface energy budget components(such as net radiation flux,sensible heat flux,latent heat flux and soil heat flux)at multiple temporal scales have significant meaning for understanding the energy and water cycle over the Tibetan Plateau(TP).In the framework of ESA-MOST Dragon Programme 4,the surface energy balance system(SEBS)was tested and used to derive surface heat fluxes at different temporal scales over the TP by a combination use of geostationary satellite(FY-2 C)data,polar orbiting satellite(SPOT/VGT,Terra/MODIS)data and ITPCAS forcing data.The validation results show there is a good agreement between derived heat fluxes and in situ measurements from Third Pole Environment Observation and Research Platform(TPEORP),which means the feasibility to derive surface heat fluxes over heterogeneous landscapes by a combination use of geostationary and polar orbiting satellite data in SEBS.The diurnal,seasonal and inter-annual variation characteristics were also clearly identified through analyses of derived turbulent fluxes.
基金National Natural Science Foundation of China !49736200Youth Science Foundation of State Oceanic Administration!96201.
文摘temporal variations and geographical distributions of sensible and latent heat fluxes over the Pacific were calculated and analyzed by using the Goddard Earth Observing System (GEOS) - four-dimensional Data Assimilation System (DAS). The calculated results showed that the heat flux over the northwestern Pacific varied obviously with seasons, but over the other ocean areas of the Pacific O cean there were no such phenomena. There was always the highest Value region of latent heat fluxes over the Pacific Ocean, but the values of sensible heat fluxes were often very small except over the ocean area north of 20°N and there was not highest value region at all. The latent heat fluxes had different distribu tions with longitude in different latitudes. And the variations of latent heat fluxes with latitude were not the same in different longitude and also it varied with seasons.
基金supported by the National Basic Research Program of China(Grant No.2009CB421405)the National Natural Science Foundationof China(Grant Nos.40730952 and 40905027)+1 种基金the Program of Knowledge Innovation for the 3rd period of Chinese Academy of Sciences(Grant No.KZCX2-YW-220)IAP07414
文摘The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000. While the seasonal variation in sensible heat flux is found to be consistent between station observations and the two reanalysis datasets, both land-air temperatures difference and surface wind speed show remarkable systematic differences. The sensible heat flux displays obvious interdecadal variability that is season-dependent. In the ERA-40 data, the sensible heat flux in spring, fall, and winter shows interdecadal variations that are similar to observations. In the NCEP-NCAR reanalysis data, sensible heat flux variations are inconsistent with and sometimes even opposite to observations. While surface wind speeds from the NCEP-NCAR reanalysis data show interdecadal changes consistent with station observations, variations in land-air temperature difference differ greatly from the observed dataset. In terms of land-air temperature difference and surface wind speed, almost no consistency with observations can be identified in the ERA-40 data, apart from the land-air temperature difference in fall and winter. These inconsistencies pose a major obstacle to the application in climate studies of surface sensible heat flux derived from reanalysis data.
基金mainly by the National Natural Science Foundation ofChina(NSFC)through the project of Regionalization ofAir-land Exchange Parameters over the Tibetan Plateau,the Ministry of Education of China through the Fund ofScientists Abroad,and the Chinese
文摘Based on previous research on sensible heat flux, we investigate it from different aspects using GAME/Tibet data measured during 6 June–13 September, 1998. This work consists of the derivation of the surface heat flux equation, analysis on counter-gradient heat transference, comparison between two different methods to compute the sensible heat flux, and investigation on the calculation scheme of sensible heat flux in the Simple Biosphere model 2 (SiB2) with relevant simulation. By improving two previous formulations, an integrated formulation for calculating surface heat flux is given. Secondly, using the measured data, the counter-gradient heat flux is clarified, leading to the fact that buoyancy plays an important role in the sensible heat transfer process. It is concluded that (1) energy imbalance is a common phenomenon resulting from the use of the traditional closure scheme on the heterogeneous underlying surface because the measured ensemble heat fluxes by eddy correlation contain the effect of nonlocal parcel movements; and (2) nonlocal parcel movement deserves more attention in any future heat flux study.
基金Supported by the National Natural Science Foundation of China(Nos.42122040,42076016)。
文摘Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.