Variation in the location of the South Asian High (SAH) in early boreal summer is strongly influenced by elevated surface heating from the Tibetan Plateau (TP) and the Iranian Plateau (IP). Based on observationa...Variation in the location of the South Asian High (SAH) in early boreal summer is strongly influenced by elevated surface heating from the Tibetan Plateau (TP) and the Iranian Plateau (IP). Based on observational and ERA-Interim data, diagnostic analyses reveal that the interannual northwestward-southeastwaxd (NW-SE) shift of the SAH in June is more closely correlated with the synergistic effect of concurrent surface thermal anomalies over the TP and IP than with each single surface thermal anomaly over either plateau from the preceding May. Concurrent surface thermal anomalies over these two plateaus in May are characterized by a negative correlation between sensible heat flux over most parts of the TP (TPSH) and IP (IPSH). This anomaly pattern can persist till June and influences the NW-SE shift of the SAH in June through the release of latent heat (LH) over northeastern India. When the IPSH is stronger (weaker) and the TPSH is weaker (stronger) than normal in May, an anomalous cyclone (anticyclone) appears over northern India at 850 hPa, which is accompanied by the ascent (descent) of air and anomalous convergence (divergence) of moisture flux in May and June. Therefore, the LH release over northeastern India is strengthened (weakened) and the vertical gradient of apparent heat source is decreased (increased) in the upper troposphere, which is responsible for the northwestward (southeastward) shift of the SAH in June.展开更多
The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000. While ...The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000. While the seasonal variation in sensible heat flux is found to be consistent between station observations and the two reanalysis datasets, both land-air temperatures difference and surface wind speed show remarkable systematic differences. The sensible heat flux displays obvious interdecadal variability that is season-dependent. In the ERA-40 data, the sensible heat flux in spring, fall, and winter shows interdecadal variations that are similar to observations. In the NCEP-NCAR reanalysis data, sensible heat flux variations are inconsistent with and sometimes even opposite to observations. While surface wind speeds from the NCEP-NCAR reanalysis data show interdecadal changes consistent with station observations, variations in land-air temperature difference differ greatly from the observed dataset. In terms of land-air temperature difference and surface wind speed, almost no consistency with observations can be identified in the ERA-40 data, apart from the land-air temperature difference in fall and winter. These inconsistencies pose a major obstacle to the application in climate studies of surface sensible heat flux derived from reanalysis data.展开更多
The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the sprin...The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the spring sensible heat flux over Northwest China was greater during the period from the late 1970s to the 1990s than during the period from the 1960s to the mid-1970s. The summer sensible heat flux was smaller in the late 1980s through the 1990s than it was in the 1970s through the early 1980s. Both the spring and summer land-air temperature differences over Northwest China displayed an obvious interdecadal increase in the late 1970s. Both the spring and summer surface wind speeds experienced an obvious interdecadal weakening in the late 1970s. The change in the surface wind speed played a more important role in the interdecadal variations in sensible heat flux during the summer, whereas the change in the land-air temperature difference was more important for the interdecadal variations in sensible heat flux in the spring. This difference was related to seasonal changes in the mean land-air temperature difference and the surface wind speed. Further analysis indicated that the increase in the spring land surface temperature in Northwest China was related to an increase in surface net radiation.展开更多
Based on previous research on sensible heat flux, we investigate it from different aspects using GAME/Tibet data measured during 6 June–13 September, 1998. This work consists of the derivation of the surface heat flu...Based on previous research on sensible heat flux, we investigate it from different aspects using GAME/Tibet data measured during 6 June–13 September, 1998. This work consists of the derivation of the surface heat flux equation, analysis on counter-gradient heat transference, comparison between two different methods to compute the sensible heat flux, and investigation on the calculation scheme of sensible heat flux in the Simple Biosphere model 2 (SiB2) with relevant simulation. By improving two previous formulations, an integrated formulation for calculating surface heat flux is given. Secondly, using the measured data, the counter-gradient heat flux is clarified, leading to the fact that buoyancy plays an important role in the sensible heat transfer process. It is concluded that (1) energy imbalance is a common phenomenon resulting from the use of the traditional closure scheme on the heterogeneous underlying surface because the measured ensemble heat fluxes by eddy correlation contain the effect of nonlocal parcel movements; and (2) nonlocal parcel movement deserves more attention in any future heat flux study.展开更多
The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variat...The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variations are remarkably different.The variability of the instant flux in the afternoon is much larger than in the nighttime.The afternoon and nighttime flux anomalies tend to be opposite.The diurnal and seasonal dependence of sensible heat flux variations is closely related to the diurnal cycle of mean land-air temperature difference.The relationship of sensible heat flux with land-air temperature difference based on the instant value differs from that based on the daily mean.The present study indicates the importance for the models to properly simulate mean land-air temperature difference and its diurnal and seasonal variations in order to capture surface sensible heat flux variability over Northwest China and predicts its plausible impacts on climate.展开更多
The stratification of the atmospheric surface layer(ASL)plays an important role in regulating the water vapor and heat exchange across the lake–air interface.Based on one year of data measured by the eddy covariance ...The stratification of the atmospheric surface layer(ASL)plays an important role in regulating the water vapor and heat exchange across the lake–air interface.Based on one year of data measured by the eddy covariance technique over Erhai Lake in 2015,the ASL stability(ζ)was divided into six ranges,including unstable(-1ζ<-0:1),weakly unstable(-0:1ζ<-0:01),near-neutral1(-0:01ζ<0),near-neutral2(0ζ<0:01),weakly stable(0:01ζ<0:1),and stable(0:1ζ<1).The characteristics of ASL stability conditions and factors controlling the latent(LE)and sensible heat(H)fluxes under different stability conditions were analyzed in this study.The stability conditions of Erhai Lake have noticeably seasonal and diurnal variation,with the nearneutral and(weakly)stable stratification usually occurring before July,with frequencies of 51.7%and 23.3%,respectively,but most of the(weakly)unstable stratification was observed after July,with a frequency of 59.8%.Large evaporation occurred even in stable atmospheric conditions,due to the coupled effects of the relatively larger lake–air vapor pressure difference and wind speed.The relative controls of LE and H by different atmospheric variables are largely dependent on the stability conditions.In stable and unstable ranges,LE is closely correlated with the vapor pressure difference,whereas in weakly unstable to weakly stable ranges,it is primarily controlled by wind speed.H is related to wind speed and the lake–air temperature difference under stable conditions,but shows no obvious relationship under unstable conditions.展开更多
New satellite-derived latent and sensible heat fluxes are performed by using Wind Sat wind speed, Wind Sat sea surface temperature, the European Centre for Medium-range Weather Forecasting(ECMWF) air humidity, and E...New satellite-derived latent and sensible heat fluxes are performed by using Wind Sat wind speed, Wind Sat sea surface temperature, the European Centre for Medium-range Weather Forecasting(ECMWF) air humidity, and ECMWF air temperature from 2004 to 2014. The 55 moored buoys are used to validate them by using the 30 min and 25 km collocation window. Furthermore, the objectively analyzed air-sea heat fluxes(OAFlux) products and the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis 2(NCEP2) products are also used for global comparisons. The mean biases of sensible and latent heat fluxes between Wind Sat flux results and buoy flux data are –0.39 and –8.09 W/m^2, respectively. In addition, the rootmean-square(RMS) errors of the sensible and latent heat fluxes between them are 5.53 and 24.69 W/m^2,respectively. The RMS errors of sensible and latent heat fluxes are observed to gradually increase with an increasing buoy wind speed. The difference shows different characteristics with an increasing sea surface temperature, air humidity, and air temperature. The zonal average latent fluxes have some high regions which are mainly located in the trade wind zones where strong winds carry dry air in January, and the maximum value centers are found in the eastern waters of Japan and on the US east coast. Overall, the seasonal variability is pronounced in the Indian Ocean, the Pacific Ocean, and the Atlantic Ocean. The three sensible and latent heat fluxes have similar latitudinal dependencies; however, some differences are found in some local regions.展开更多
A new method for deduction of the sensible heat flux is validated with three sets of published SODAR (sound detection and ranging) data. Although the related expressions have previously been confirmed by the author ...A new method for deduction of the sensible heat flux is validated with three sets of published SODAR (sound detection and ranging) data. Although the related expressions have previously been confirmed by the author with surface layer data, they have not yet been validated with observations from the boundary layer before this work. In the study, selected SODAR data are used to test the method for the convective boundary layer. The sensible heat flux (SHF) retrieved from SODAR data is found to decrease linearly with height in the mixed layer. The surface sensible heat fluxes derived from the deduced sensible heat flux profiles under convective conditions agree well with those measured by the eddy correlation method. The characteristics of SHF profiles deduced from SODAR data in different places reflect the background meteorology and terrain. The upper part of the SHF profile (SHFP) for a complicated terrain is found to have a different slope from the lower part. It is suggested that the former reflects the advective characteristic of turbulence in upwind topography. A similarity relationship for the estimation of SHFP in a well mixed layer with surface SHF and zero-heat-flux layer height is presented.展开更多
The South China Sea (SCS) is significantly influenced by El Nino and the Southern Oscillation (ENSO) through ENSO-driven atmospheric and oceanic changes. We analyzed measurements made from 1960 to 2004 to investig...The South China Sea (SCS) is significantly influenced by El Nino and the Southern Oscillation (ENSO) through ENSO-driven atmospheric and oceanic changes. We analyzed measurements made from 1960 to 2004 to investigate the interannual variability of the latent and sensible heat fluxes over the SCS. Both the interannual variations of latent and sensible heat fluxes are closely related to ENSO events. The low-pass mean heat flux anomalies vary in a coherent manner with the low-pass mean Southern Oscillation Index (SOI). Time lags between the heat flux anomalies and the SST anomalies were also studied. We found that latent heat flux anomalies have a minimum value around January of the year following El Nino events. During and after the mature phase of E1 Nino, a change of atmospheric circulation alters the local SCS near-surface humidity and the monsoon winds. During the mature phase of E1 Nino, the wind speed decreases over the entire sea, and the air-sea specific humidity difference anomalies decreases in the northern SCS and increases in the southern SCS. Thus, a combined effect of wind speed anomalies and air-sea specific humidity difference anomalies results in the latent heat flux anomalies attaining minimum levels around January of the year following an E1 Nino year.展开更多
During the second course of USA - PRC joint air sea interaction experiment in 1986, the temperature structure parameters CT2 were measured by sodar over the Western Pacific Ocean. Based on similarity theory, a method ...During the second course of USA - PRC joint air sea interaction experiment in 1986, the temperature structure parameters CT2 were measured by sodar over the Western Pacific Ocean. Based on similarity theory, a method is discussed to calculate the sensible heat flux over the ocean in unstable stratification. Becausehumidity is great over the ocean, so we have to consider the influence of water vapor structure parameter Ce2and the correlation coefficient betweene and T on the calculation of sensible heat flux using CT2 profiles measured by sodar. A new formula is suggested in terms of parameterization. The sensible heat flux calculated by sodar measurements is compared with that by bulk transfer method, and the results agree well.展开更多
Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of t...Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.展开更多
The time and space variations of the ten-day mean surface sensible heat flux have been analyzed in this paper based on the data of NCEP/NCAR from January of 1979 to December of 1995 in the South China Sea(SCS)monsoon ...The time and space variations of the ten-day mean surface sensible heat flux have been analyzed in this paper based on the data of NCEP/NCAR from January of 1979 to December of 1995 in the South China Sea(SCS)monsoon region.It is found that large variations of the surface sensible heat flux standard deviations exist in the northwestern Indochina Peninsula and the Indian Peninsula regions,and their locations and strength change significantly during the onset period of SCS monsoon.The negative deviations appear evidently earlier in the Indocbina Peninsula than in the Indian Peninsula but the deviation strength in the Indian Peninsula is stronger than that in the Indochina Peninsula.The appearance of the zonal negative mean deviations in the southern part of the Indochina Peninsula corresponds to the date of the SCS summer monsoon onset,while the occurrence of the deviation decrease corresponds to the date of the South Asian monsoon onset. The sensible heat flux increases dekad by dekad before the onset of the summer monsoon in the Indian Peninsula and the Indochina Peninsula and decreases after the monsoon onset.Therefore, the surface sensible heat flux changes in the Indochina and the Indian Peninsula regions maybe have some connections with the SCS monsoon onset and the Indian monsoon onset,and the Indochina Peninsula maybe becomes the sensitive or key region to the SCS monsoon onset and the land maybe plays an important role in triggering summer monsoon onset.展开更多
The eight datasets of the summer (June-August) surface sensible heat (SH) flux over the Tibetan Plateau (TP) are compared on the time scales of the climatology,interannual variability and linear trend during 1980-2006...The eight datasets of the summer (June-August) surface sensible heat (SH) flux over the Tibetan Plateau (TP) are compared on the time scales of the climatology,interannual variability and linear trend during 1980-2006.These data sets include five reanalyses (National Center for Environmental Prediction reanalysis,NCEPR1 and NCEPR2,NCEP climate forecast system reanalysis,CFSR,Japanese 25-year reanalysis,JRA,and European Centre for Medium Range Weather Forecasts reanalysis,ERA40),two land surface model outputs (Noah model data of Global Land Data Assimilation System version 2,G2_Noah,and Simple Biosphere version 2 output by Yang et al.,YSiB2),and estimated SH based on China Meteorological Administration (CMA) station observations,ObCh.The results suggest that the summer SH on the TP differs from one dataset to another due to different inputs and calculations.Climatologically,the ERA40 and JRA distribute rather uniformly while the other six products show similar regional disparities,that is,larger in the west than in the east and stronger in the north and the south than in the middle of the plateau.The mean magnitude of the SH averaged over the 76 stations above the TP varies considerably among each dataset with the difference of more than 20 W m?2 between the maximum (G2_Noah) and minimum (ObCh).Nevertheless,they are consistent in the interannual variability and mostly show a significant decreasing trend corresponding to the weakening surface wind speed,in spite of the distinct trend for the ground-air temperature difference among the different data sets.These two consistencies indicate the particular availability of the SH products,which is helpful to the relevant climate dynamics research.展开更多
The semi-arid regions, as climatic and ecosystem transitional zones, are the most vulnerable to global environmental change. Earlier researches indicate that the semi-arid regions are characterized by strong landatmos...The semi-arid regions, as climatic and ecosystem transitional zones, are the most vulnerable to global environmental change. Earlier researches indicate that the semi-arid regions are characterized by strong landatmosphere coupling in which soil moisture is the crucial variable in land surface processes. In this paper, we investigate the sensitivity of the sensible/latent heat fluxes to soil moisture during the growing season based on the enhanced observations at Tongyu in the Jilin province of China, a reference site of international Coordinated Energy and Water Cycle Observations Project (CEOP) in the semi-arid regions, by using a sophisticated land surface model (NCAR_CLM3.0). Comparisons between the observed and simulated sensible/latent heat fluxes indicate that the soil moisture has obvious effects on the sensible/latent heat fluxes in terms of diurnal cycle and seasonal evolution. Better representation of the soil moisture could improve the model performance to a large degree. Therefore, for the purpose of simulating the land-atmosphere interaction and predicting the climate and water resource changes in semi-arid regions, it is necessary to enhance the description of the soil moisture distribution both in the way of observation and its treatment in land surface models.展开更多
Surface energy fluxes were measured using Bowen-Ratio Energy Balance technique (BREB) and eddy correlation system at Luancheng of Hebei Province, on the North China Plain from 1999 to 2001. Average diurnal variation o...Surface energy fluxes were measured using Bowen-Ratio Energy Balance technique (BREB) and eddy correlation system at Luancheng of Hebei Province, on the North China Plain from 1999 to 2001. Average diurnal variation of surface energy fluxes and CO2 flux for maize showed the inverse “U” type. The average peak fluxes did not appear at noon, but after noon. The average peak CO2 flux was about 1.65 mg m-2 s-1. Crop water use efficiency (WUE) increased quickly in the morning, stabilized after 10:00 and decreased quickly after 15:00 with no evident peak value. The ratio of latent heat flux (λE) to net solar radiation (Rn) was always higher than 70% during winter wheat and maize seasons. The seasonal average ratio of sensible heat flux (H) divided byR n stayed at about 15% above the field surface; the seasonal average ratio of conductive heat flux (G) divided by Rn varied between 5% and 13%, and the averageG/R> n from the wheat canopy was evidently higher than that from the maize canopy. The evaporative fraction (EF) is correlated to the Bowen ratio in a reverse function.EF for winter wheat increased quickly during that revival stage, after the stage, it gradually stabilized to 1.0, and fluctuated around 1.0. EF for maize also fluctuated around 1.0 before the later grain filling stage, and decreased after that stage.展开更多
The impacts of the variations of surface heat fluxes over the Tibetan Plateau (TP) and surrounding areas on the interannual variation of the South China Sea (SCS) summer monsoon intensity is analyzed using the NCEP/NC...The impacts of the variations of surface heat fluxes over the Tibetan Plateau (TP) and surrounding areas on the interannual variation of the South China Sea (SCS) summer monsoon intensity is analyzed using the NCEP/NCAR reanalysis monthly sensible heat flux data from 1949 to 2000 and monthly mean wind and temperature field data from 1958 to 1997.The results show that there is a distinct interdecadal trend in sensible heat over the key areas of the TP and the SCS summer monsoon intensity as well as South Asia high intensity (SAHI),the transition occurs in late 1970s.The SCS summer monsoon intensity has a significant positive correlation with the variation of surface sensible heat fluxes over the northwestern part of the TP,while it has negative correlation with the surface sensible heat fluxes in the south of the TP.During the strong SCS summer monsoon year,the vertical ascending motion in the northwestern TP is strengthened,but in the southern TP it is weakened,and the position of the South Asian high is northward,while in the weak summer monsoon year,it is in the contrary.The SAHI is closely related to variation of surface heat fluxes over the TP and surrounding areas,and there exists a negative relationship between the SCS summer monsoon intensity and SAHI.展开更多
Using the observed monthly precipitation and NCEP (National Centers for Environmental Prediction) reanalysis surface ?ux data from 1951–2000, the connections between the seasonal SSHNF (Surface Sensible Heat Net Fl...Using the observed monthly precipitation and NCEP (National Centers for Environmental Prediction) reanalysis surface ?ux data from 1951–2000, the connections between the seasonal SSHNF (Surface Sensible Heat Net Flux) over the Asian continent and the regional summer precipitation of China were examined. The patterns of collective and individual correlations were identi?ed. The results indicate that the response of the regional summer precipitation of China to the seasonal SSHNF over the study area varies according to region and season. The interannual variability of summer precipitation anomalies over Xinjiang, the northernmost Northeast China, and the North China Plain are most sensitive to the anomaly of the seasonal SSHNF. There are signi?cant collective correlations between the interannual anomalies of the seasonal SSHNF and summer precipitation over these regions. In contrast, the Southeast Tibetan Plateau, Huaihe River Valley, and surrounding areas exhibit the least signi?cant correlation. Signi?cant individual correlations exist between the summer precipitation over the southernmost Northeast China, East Inner Mongolia, South of the Yangtze River and South China and the seasonal SSHNF in certain seasons over the following areas: near Lake Baikal and Lake Balkhash, near Da Hinggan Mountains and Xiao Hinggan Mountains, as well as the Tibetan Plateau.展开更多
Based on NCEP/NCAR reanalysis monthly data,the relation between the surface sensible heat flux,(SHTFL) in the Tibetan Plateau and its vicinity and the East Asian winter monsoon is revealed as follows:on the inter-annu...Based on NCEP/NCAR reanalysis monthly data,the relation between the surface sensible heat flux,(SHTFL) in the Tibetan Plateau and its vicinity and the East Asian winter monsoon is revealed as follows:on the inter-annual and longer time scales,the difference between SHTFL anomalies in the east and southern slope of the Tibetan Plateau last spring has influence on the East Asian winter monsoon,that is,SHTFL anomaly in the east of the Tibetan Plateau was positive and that in the southern slope was negative last spring,then the East Asian winter monsoon would become more vigorous,and vice versa.Both the most significant period of the difference between SHTFL anomalies in the east and southern slope of the Tibetan Plateau and that of the East Asian winter monsoon index are 2 to 4-year time scales.On the 2 to 4-year time scales,the heterogeneous spatial distribution of SHTFL anomalies in the east and southern slope of the Tibetan Plateau last spring has effect on the East Asian winter monsoon,after SHTFL anomaly in the east of the Tibetan Plateau was positive and that in the southern slope was negative last spring,then the East Asian winter monsoon would be more powerful,and vice versa.The lag influence of the difference of SHTFL anomalies in the east and southern slope of the Tibetan Plateau on the East Asian winter monsoon brings into effect mainly on 2 to 4-year time scales.In the end an reasonable explanation for their relationship has been discussed.展开更多
Evapotranspiration acts an important role in hydrologic cycle and water resources planning. But the estimation issue still remains until nowadays. This research attempts to make clear this problem by the following way...Evapotranspiration acts an important role in hydrologic cycle and water resources planning. But the estimation issue still remains until nowadays. This research attempts to make clear this problem by the following way. In a humid region, by applying the Bowen ratio concept and optimum procedure on the soil surface, sensible and latent heat fluxes are estimated using net radiation (Rn) and heat flux into the ground (G). The method uses air temperature and humidity at a single height by reciprocally determining the soil surface temperature (Ts) and the relative humidity (rehs). This feature can be remarkably extended to the utilization. The validity of the method is confirmed by comparing of observed and estimated latent (lE) and sensible heat flux (H) using the eddy covariance method. The hourly change of the lE, H, Ts and rehs on the soil surface, yearly change of lE and H and relationship of estimated lE and H versus observed are clarified. Furthermore, monthly evapotranspiration is estimated from the lE. The research was conducted using hourly data of FLUXNET at a site of Japan, three sites of the United States and two sites of Europe in humid regions having over 1000 mm of annual precipitation.展开更多
The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a re...The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.91437219,41275075 and 41175005)the National Basic Research Program of China (Grant No.2013CB430203)
文摘Variation in the location of the South Asian High (SAH) in early boreal summer is strongly influenced by elevated surface heating from the Tibetan Plateau (TP) and the Iranian Plateau (IP). Based on observational and ERA-Interim data, diagnostic analyses reveal that the interannual northwestward-southeastwaxd (NW-SE) shift of the SAH in June is more closely correlated with the synergistic effect of concurrent surface thermal anomalies over the TP and IP than with each single surface thermal anomaly over either plateau from the preceding May. Concurrent surface thermal anomalies over these two plateaus in May are characterized by a negative correlation between sensible heat flux over most parts of the TP (TPSH) and IP (IPSH). This anomaly pattern can persist till June and influences the NW-SE shift of the SAH in June through the release of latent heat (LH) over northeastern India. When the IPSH is stronger (weaker) and the TPSH is weaker (stronger) than normal in May, an anomalous cyclone (anticyclone) appears over northern India at 850 hPa, which is accompanied by the ascent (descent) of air and anomalous convergence (divergence) of moisture flux in May and June. Therefore, the LH release over northeastern India is strengthened (weakened) and the vertical gradient of apparent heat source is decreased (increased) in the upper troposphere, which is responsible for the northwestward (southeastward) shift of the SAH in June.
基金supported by the National Basic Research Program of China(Grant No.2009CB421405)the National Natural Science Foundationof China(Grant Nos.40730952 and 40905027)+1 种基金the Program of Knowledge Innovation for the 3rd period of Chinese Academy of Sciences(Grant No.KZCX2-YW-220)IAP07414
文摘The present study compares seasonal and interdecadal variations in surface sensible heat flux over Northwest China between station observations and ERA-40 and NCEP-NCAR reanalysis data for the period 1960-2000. While the seasonal variation in sensible heat flux is found to be consistent between station observations and the two reanalysis datasets, both land-air temperatures difference and surface wind speed show remarkable systematic differences. The sensible heat flux displays obvious interdecadal variability that is season-dependent. In the ERA-40 data, the sensible heat flux in spring, fall, and winter shows interdecadal variations that are similar to observations. In the NCEP-NCAR reanalysis data, sensible heat flux variations are inconsistent with and sometimes even opposite to observations. While surface wind speeds from the NCEP-NCAR reanalysis data show interdecadal changes consistent with station observations, variations in land-air temperature difference differ greatly from the observed dataset. In terms of land-air temperature difference and surface wind speed, almost no consistency with observations can be identified in the ERA-40 data, apart from the land-air temperature difference in fall and winter. These inconsistencies pose a major obstacle to the application in climate studies of surface sensible heat flux derived from reanalysis data.
基金supported by the National Natural Science Foundation of China (Grant No. 40730952)the National Basic Research Program of China (Grant No. 2009CB421405)the Program of Knowledge Innovation for the third period, the Chinese Academy of Sciences (Grant No. KZCX2-YW-220), and IAP07414
文摘The present study investigates the difference in interdecadal variability of the spring and summer sensible heat fluxes over Northwest China by using station observations from 1960 to 2000. It was found that the spring sensible heat flux over Northwest China was greater during the period from the late 1970s to the 1990s than during the period from the 1960s to the mid-1970s. The summer sensible heat flux was smaller in the late 1980s through the 1990s than it was in the 1970s through the early 1980s. Both the spring and summer land-air temperature differences over Northwest China displayed an obvious interdecadal increase in the late 1970s. Both the spring and summer surface wind speeds experienced an obvious interdecadal weakening in the late 1970s. The change in the surface wind speed played a more important role in the interdecadal variations in sensible heat flux during the summer, whereas the change in the land-air temperature difference was more important for the interdecadal variations in sensible heat flux in the spring. This difference was related to seasonal changes in the mean land-air temperature difference and the surface wind speed. Further analysis indicated that the increase in the spring land surface temperature in Northwest China was related to an increase in surface net radiation.
基金mainly by the National Natural Science Foundation ofChina(NSFC)through the project of Regionalization ofAir-land Exchange Parameters over the Tibetan Plateau,the Ministry of Education of China through the Fund ofScientists Abroad,and the Chinese
文摘Based on previous research on sensible heat flux, we investigate it from different aspects using GAME/Tibet data measured during 6 June–13 September, 1998. This work consists of the derivation of the surface heat flux equation, analysis on counter-gradient heat transference, comparison between two different methods to compute the sensible heat flux, and investigation on the calculation scheme of sensible heat flux in the Simple Biosphere model 2 (SiB2) with relevant simulation. By improving two previous formulations, an integrated formulation for calculating surface heat flux is given. Secondly, using the measured data, the counter-gradient heat flux is clarified, leading to the fact that buoyancy plays an important role in the sensible heat transfer process. It is concluded that (1) energy imbalance is a common phenomenon resulting from the use of the traditional closure scheme on the heterogeneous underlying surface because the measured ensemble heat fluxes by eddy correlation contain the effect of nonlocal parcel movements; and (2) nonlocal parcel movement deserves more attention in any future heat flux study.
基金supported by the National Basic Research Program of China (Grant No. 2009CB421405)the National Natural Science Foundation of China (Grant Nos.40905027 and 40730952)Program of Knowledge Innovationfor the 3rd period of Chinese Academy of Sciences (Grant No.KZCX2-YW-220)
文摘The present study documents the variability of surface sensible heat flux over Northwest China using station observations for the period 1961 2000.It is found that the afternoon and nighttime sensible heat flux variations are remarkably different.The variability of the instant flux in the afternoon is much larger than in the nighttime.The afternoon and nighttime flux anomalies tend to be opposite.The diurnal and seasonal dependence of sensible heat flux variations is closely related to the diurnal cycle of mean land-air temperature difference.The relationship of sensible heat flux with land-air temperature difference based on the instant value differs from that based on the daily mean.The present study indicates the importance for the models to properly simulate mean land-air temperature difference and its diurnal and seasonal variations in order to capture surface sensible heat flux variability over Northwest China and predicts its plausible impacts on climate.
基金supported by the National Key Research and Development Program of China (No. 2017YFC1502101)National Natural Science Foundation of China (Nos. 91537212 and 41775018)。
文摘The stratification of the atmospheric surface layer(ASL)plays an important role in regulating the water vapor and heat exchange across the lake–air interface.Based on one year of data measured by the eddy covariance technique over Erhai Lake in 2015,the ASL stability(ζ)was divided into six ranges,including unstable(-1ζ<-0:1),weakly unstable(-0:1ζ<-0:01),near-neutral1(-0:01ζ<0),near-neutral2(0ζ<0:01),weakly stable(0:01ζ<0:1),and stable(0:1ζ<1).The characteristics of ASL stability conditions and factors controlling the latent(LE)and sensible heat(H)fluxes under different stability conditions were analyzed in this study.The stability conditions of Erhai Lake have noticeably seasonal and diurnal variation,with the nearneutral and(weakly)stable stratification usually occurring before July,with frequencies of 51.7%and 23.3%,respectively,but most of the(weakly)unstable stratification was observed after July,with a frequency of 59.8%.Large evaporation occurred even in stable atmospheric conditions,due to the coupled effects of the relatively larger lake–air vapor pressure difference and wind speed.The relative controls of LE and H by different atmospheric variables are largely dependent on the stability conditions.In stable and unstable ranges,LE is closely correlated with the vapor pressure difference,whereas in weakly unstable to weakly stable ranges,it is primarily controlled by wind speed.H is related to wind speed and the lake–air temperature difference under stable conditions,but shows no obvious relationship under unstable conditions.
基金The National Natural Science Foundation of China under contract No.41576171
文摘New satellite-derived latent and sensible heat fluxes are performed by using Wind Sat wind speed, Wind Sat sea surface temperature, the European Centre for Medium-range Weather Forecasting(ECMWF) air humidity, and ECMWF air temperature from 2004 to 2014. The 55 moored buoys are used to validate them by using the 30 min and 25 km collocation window. Furthermore, the objectively analyzed air-sea heat fluxes(OAFlux) products and the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis 2(NCEP2) products are also used for global comparisons. The mean biases of sensible and latent heat fluxes between Wind Sat flux results and buoy flux data are –0.39 and –8.09 W/m^2, respectively. In addition, the rootmean-square(RMS) errors of the sensible and latent heat fluxes between them are 5.53 and 24.69 W/m^2,respectively. The RMS errors of sensible and latent heat fluxes are observed to gradually increase with an increasing buoy wind speed. The difference shows different characteristics with an increasing sea surface temperature, air humidity, and air temperature. The zonal average latent fluxes have some high regions which are mainly located in the trade wind zones where strong winds carry dry air in January, and the maximum value centers are found in the eastern waters of Japan and on the US east coast. Overall, the seasonal variability is pronounced in the Indian Ocean, the Pacific Ocean, and the Atlantic Ocean. The three sensible and latent heat fluxes have similar latitudinal dependencies; however, some differences are found in some local regions.
文摘A new method for deduction of the sensible heat flux is validated with three sets of published SODAR (sound detection and ranging) data. Although the related expressions have previously been confirmed by the author with surface layer data, they have not yet been validated with observations from the boundary layer before this work. In the study, selected SODAR data are used to test the method for the convective boundary layer. The sensible heat flux (SHF) retrieved from SODAR data is found to decrease linearly with height in the mixed layer. The surface sensible heat fluxes derived from the deduced sensible heat flux profiles under convective conditions agree well with those measured by the eddy correlation method. The characteristics of SHF profiles deduced from SODAR data in different places reflect the background meteorology and terrain. The upper part of the SHF profile (SHFP) for a complicated terrain is found to have a different slope from the lower part. It is suggested that the former reflects the advective characteristic of turbulence in upwind topography. A similarity relationship for the estimation of SHFP in a well mixed layer with surface SHF and zero-heat-flux layer height is presented.
基金Supported by the National Basic Research Program of China under (No. 973-2007CB411807)the National High Technology Development Project (No.863-2006AA09Z140)the National Science Foundation under (No. 40506024)
文摘The South China Sea (SCS) is significantly influenced by El Nino and the Southern Oscillation (ENSO) through ENSO-driven atmospheric and oceanic changes. We analyzed measurements made from 1960 to 2004 to investigate the interannual variability of the latent and sensible heat fluxes over the SCS. Both the interannual variations of latent and sensible heat fluxes are closely related to ENSO events. The low-pass mean heat flux anomalies vary in a coherent manner with the low-pass mean Southern Oscillation Index (SOI). Time lags between the heat flux anomalies and the SST anomalies were also studied. We found that latent heat flux anomalies have a minimum value around January of the year following El Nino events. During and after the mature phase of E1 Nino, a change of atmospheric circulation alters the local SCS near-surface humidity and the monsoon winds. During the mature phase of E1 Nino, the wind speed decreases over the entire sea, and the air-sea specific humidity difference anomalies decreases in the northern SCS and increases in the southern SCS. Thus, a combined effect of wind speed anomalies and air-sea specific humidity difference anomalies results in the latent heat flux anomalies attaining minimum levels around January of the year following an E1 Nino year.
文摘During the second course of USA - PRC joint air sea interaction experiment in 1986, the temperature structure parameters CT2 were measured by sodar over the Western Pacific Ocean. Based on similarity theory, a method is discussed to calculate the sensible heat flux over the ocean in unstable stratification. Becausehumidity is great over the ocean, so we have to consider the influence of water vapor structure parameter Ce2and the correlation coefficient betweene and T on the calculation of sensible heat flux using CT2 profiles measured by sodar. A new formula is suggested in terms of parameterization. The sensible heat flux calculated by sodar measurements is compared with that by bulk transfer method, and the results agree well.
基金Supported by the National Natural Science Foundation of China(Nos.42122040,42076016)。
文摘Tropical cyclones constitute a major risk for coastal communities.To assess their damage potential,accurate predictions of their intensification are needed,which requires a detailed understanding of the evolution of turbulent heat flux(THF).By combining multiple buoy observations along the south north storm track,we investigated the THF anomalies associated with tropical storm Danas(2019)in the East China Sea(ECS)during its complete life cycle from the intensification stage to the mature stage and finally to its dissipation on land.The storm passage is characterized by strong winds of 10-20 m/s and a sea level pressure below 1000 hPa,resulting in a substantial enhancement of THF.Latent heat(LH)fluxes are most strongly affected by wind speed,with a gradually increasing contribution of humidity along the trajectory.The relative contributions of wind speed and temperature anomalies to sensible heat(SH)depend on the stability of the boundary layer.Under stable conditions,SH variations are driven by wind speed,while under near-neutral conditions,SH variations are driven by temperature.A comparison of the observed THF and associated variables with outputs from the ERA 5 and MERRA 2 reanalysis products reveals that the reanalysis products can reproduce the basic evolution and composition of the observed THF.However,under extreme weather conditions,temperature and humidity variations are poorly captured by ERA 5 and MERRA 2,leading to large LH and SH errors.The differences in the observed and reproduced LH and SH during the passage of Danas amount to 26.1 and 6.6 W/m^(2) for ERA 5,respectively,and to 39.4 and 12.5 W/m^(2) for MERRA 2,respectively.These results demonstrate the need to improve the representation of tropical cyclones in reanalysis products to better predict their intensification process and reduce their damage.
基金National Natural Science Foundation of China under the Grants 49735170.
文摘The time and space variations of the ten-day mean surface sensible heat flux have been analyzed in this paper based on the data of NCEP/NCAR from January of 1979 to December of 1995 in the South China Sea(SCS)monsoon region.It is found that large variations of the surface sensible heat flux standard deviations exist in the northwestern Indochina Peninsula and the Indian Peninsula regions,and their locations and strength change significantly during the onset period of SCS monsoon.The negative deviations appear evidently earlier in the Indocbina Peninsula than in the Indian Peninsula but the deviation strength in the Indian Peninsula is stronger than that in the Indochina Peninsula.The appearance of the zonal negative mean deviations in the southern part of the Indochina Peninsula corresponds to the date of the SCS summer monsoon onset,while the occurrence of the deviation decrease corresponds to the date of the South Asian monsoon onset. The sensible heat flux increases dekad by dekad before the onset of the summer monsoon in the Indian Peninsula and the Indochina Peninsula and decreases after the monsoon onset.Therefore, the surface sensible heat flux changes in the Indochina and the Indian Peninsula regions maybe have some connections with the SCS monsoon onset and the Indian monsoon onset,and the Indochina Peninsula maybe becomes the sensitive or key region to the SCS monsoon onset and the land maybe plays an important role in triggering summer monsoon onset.
基金supported by Major Projects of the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-01)the National Basic Research Program of China (Grant No. 2010CB950403)National Natural Science Foundation of China (Grant Nos. 40925015,40810059005 and 40821092)
文摘The eight datasets of the summer (June-August) surface sensible heat (SH) flux over the Tibetan Plateau (TP) are compared on the time scales of the climatology,interannual variability and linear trend during 1980-2006.These data sets include five reanalyses (National Center for Environmental Prediction reanalysis,NCEPR1 and NCEPR2,NCEP climate forecast system reanalysis,CFSR,Japanese 25-year reanalysis,JRA,and European Centre for Medium Range Weather Forecasts reanalysis,ERA40),two land surface model outputs (Noah model data of Global Land Data Assimilation System version 2,G2_Noah,and Simple Biosphere version 2 output by Yang et al.,YSiB2),and estimated SH based on China Meteorological Administration (CMA) station observations,ObCh.The results suggest that the summer SH on the TP differs from one dataset to another due to different inputs and calculations.Climatologically,the ERA40 and JRA distribute rather uniformly while the other six products show similar regional disparities,that is,larger in the west than in the east and stronger in the north and the south than in the middle of the plateau.The mean magnitude of the SH averaged over the 76 stations above the TP varies considerably among each dataset with the difference of more than 20 W m?2 between the maximum (G2_Noah) and minimum (ObCh).Nevertheless,they are consistent in the interannual variability and mostly show a significant decreasing trend corresponding to the weakening surface wind speed,in spite of the distinct trend for the ground-air temperature difference among the different data sets.These two consistencies indicate the particular availability of the SH products,which is helpful to the relevant climate dynamics research.
基金supported by National Key Basic Research Program of China (GrantNo. 2006CB400500)National Natural Science Founda-tion of China under Grant Nos. 40775050, 40405014Knowledge Innovation Project of Chinese Academy Sci-ences (IAP07210).
文摘The semi-arid regions, as climatic and ecosystem transitional zones, are the most vulnerable to global environmental change. Earlier researches indicate that the semi-arid regions are characterized by strong landatmosphere coupling in which soil moisture is the crucial variable in land surface processes. In this paper, we investigate the sensitivity of the sensible/latent heat fluxes to soil moisture during the growing season based on the enhanced observations at Tongyu in the Jilin province of China, a reference site of international Coordinated Energy and Water Cycle Observations Project (CEOP) in the semi-arid regions, by using a sophisticated land surface model (NCAR_CLM3.0). Comparisons between the observed and simulated sensible/latent heat fluxes indicate that the soil moisture has obvious effects on the sensible/latent heat fluxes in terms of diurnal cycle and seasonal evolution. Better representation of the soil moisture could improve the model performance to a large degree. Therefore, for the purpose of simulating the land-atmosphere interaction and predicting the climate and water resource changes in semi-arid regions, it is necessary to enhance the description of the soil moisture distribution both in the way of observation and its treatment in land surface models.
基金National Natural Science Foundation of China, No.40071008No.49890330+1 种基金 Academician Agricultural Water-saving Foundation, Hebei Province of China, No. 01220703D Special Fund for Major State Basic Research Project, No. CXIOG-C003-03
文摘Surface energy fluxes were measured using Bowen-Ratio Energy Balance technique (BREB) and eddy correlation system at Luancheng of Hebei Province, on the North China Plain from 1999 to 2001. Average diurnal variation of surface energy fluxes and CO2 flux for maize showed the inverse “U” type. The average peak fluxes did not appear at noon, but after noon. The average peak CO2 flux was about 1.65 mg m-2 s-1. Crop water use efficiency (WUE) increased quickly in the morning, stabilized after 10:00 and decreased quickly after 15:00 with no evident peak value. The ratio of latent heat flux (λE) to net solar radiation (Rn) was always higher than 70% during winter wheat and maize seasons. The seasonal average ratio of sensible heat flux (H) divided byR n stayed at about 15% above the field surface; the seasonal average ratio of conductive heat flux (G) divided by Rn varied between 5% and 13%, and the averageG/R> n from the wheat canopy was evidently higher than that from the maize canopy. The evaporative fraction (EF) is correlated to the Bowen ratio in a reverse function.EF for winter wheat increased quickly during that revival stage, after the stage, it gradually stabilized to 1.0, and fluctuated around 1.0. EF for maize also fluctuated around 1.0 before the later grain filling stage, and decreased after that stage.
基金South China Sea Monsoon Experiment (SCSMEX)the Project from National Natural Science Foundation of China"The interaction between the South Asian high and Asian summer monsoon and its mechanism study"(40175021)
文摘The impacts of the variations of surface heat fluxes over the Tibetan Plateau (TP) and surrounding areas on the interannual variation of the South China Sea (SCS) summer monsoon intensity is analyzed using the NCEP/NCAR reanalysis monthly sensible heat flux data from 1949 to 2000 and monthly mean wind and temperature field data from 1958 to 1997.The results show that there is a distinct interdecadal trend in sensible heat over the key areas of the TP and the SCS summer monsoon intensity as well as South Asia high intensity (SAHI),the transition occurs in late 1970s.The SCS summer monsoon intensity has a significant positive correlation with the variation of surface sensible heat fluxes over the northwestern part of the TP,while it has negative correlation with the surface sensible heat fluxes in the south of the TP.During the strong SCS summer monsoon year,the vertical ascending motion in the northwestern TP is strengthened,but in the southern TP it is weakened,and the position of the South Asian high is northward,while in the weak summer monsoon year,it is in the contrary.The SAHI is closely related to variation of surface heat fluxes over the TP and surrounding areas,and there exists a negative relationship between the SCS summer monsoon intensity and SAHI.
文摘Using the observed monthly precipitation and NCEP (National Centers for Environmental Prediction) reanalysis surface ?ux data from 1951–2000, the connections between the seasonal SSHNF (Surface Sensible Heat Net Flux) over the Asian continent and the regional summer precipitation of China were examined. The patterns of collective and individual correlations were identi?ed. The results indicate that the response of the regional summer precipitation of China to the seasonal SSHNF over the study area varies according to region and season. The interannual variability of summer precipitation anomalies over Xinjiang, the northernmost Northeast China, and the North China Plain are most sensitive to the anomaly of the seasonal SSHNF. There are signi?cant collective correlations between the interannual anomalies of the seasonal SSHNF and summer precipitation over these regions. In contrast, the Southeast Tibetan Plateau, Huaihe River Valley, and surrounding areas exhibit the least signi?cant correlation. Signi?cant individual correlations exist between the summer precipitation over the southernmost Northeast China, East Inner Mongolia, South of the Yangtze River and South China and the seasonal SSHNF in certain seasons over the following areas: near Lake Baikal and Lake Balkhash, near Da Hinggan Mountains and Xiao Hinggan Mountains, as well as the Tibetan Plateau.
基金Supported by the National Key Fundamental Research Project"Research on the Formation Mechanism and the Prediction Theory of Hazardous Weather over China"
文摘Based on NCEP/NCAR reanalysis monthly data,the relation between the surface sensible heat flux,(SHTFL) in the Tibetan Plateau and its vicinity and the East Asian winter monsoon is revealed as follows:on the inter-annual and longer time scales,the difference between SHTFL anomalies in the east and southern slope of the Tibetan Plateau last spring has influence on the East Asian winter monsoon,that is,SHTFL anomaly in the east of the Tibetan Plateau was positive and that in the southern slope was negative last spring,then the East Asian winter monsoon would become more vigorous,and vice versa.Both the most significant period of the difference between SHTFL anomalies in the east and southern slope of the Tibetan Plateau and that of the East Asian winter monsoon index are 2 to 4-year time scales.On the 2 to 4-year time scales,the heterogeneous spatial distribution of SHTFL anomalies in the east and southern slope of the Tibetan Plateau last spring has effect on the East Asian winter monsoon,after SHTFL anomaly in the east of the Tibetan Plateau was positive and that in the southern slope was negative last spring,then the East Asian winter monsoon would be more powerful,and vice versa.The lag influence of the difference of SHTFL anomalies in the east and southern slope of the Tibetan Plateau on the East Asian winter monsoon brings into effect mainly on 2 to 4-year time scales.In the end an reasonable explanation for their relationship has been discussed.
文摘Evapotranspiration acts an important role in hydrologic cycle and water resources planning. But the estimation issue still remains until nowadays. This research attempts to make clear this problem by the following way. In a humid region, by applying the Bowen ratio concept and optimum procedure on the soil surface, sensible and latent heat fluxes are estimated using net radiation (Rn) and heat flux into the ground (G). The method uses air temperature and humidity at a single height by reciprocally determining the soil surface temperature (Ts) and the relative humidity (rehs). This feature can be remarkably extended to the utilization. The validity of the method is confirmed by comparing of observed and estimated latent (lE) and sensible heat flux (H) using the eddy covariance method. The hourly change of the lE, H, Ts and rehs on the soil surface, yearly change of lE and H and relationship of estimated lE and H versus observed are clarified. Furthermore, monthly evapotranspiration is estimated from the lE. The research was conducted using hourly data of FLUXNET at a site of Japan, three sites of the United States and two sites of Europe in humid regions having over 1000 mm of annual precipitation.
文摘The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study.