To reasearch on the infrared target perception by pyroelectric infrared (PIR) sensor in network domain measurement,a closed sensing network domain composed of eight-PIR-sensor array is proposed for the minimum sensing...To reasearch on the infrared target perception by pyroelectric infrared (PIR) sensor in network domain measurement,a closed sensing network domain composed of eight-PIR-sensor array is proposed for the minimum sensing cell measurement in network domain and to realize the moving target perception and trajectory prediction. Moreover,the feasibility and accuracy of the proposed method are verified through experiments. The experimental results demonstrate that the maximum error between the real trajectory and the predicted trajectory of the minimum sensing cell measurement method is 0.64 m,which can achieve infrared target perception and moving trajectory prediction.展开更多
To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of t...To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.展开更多
文摘To reasearch on the infrared target perception by pyroelectric infrared (PIR) sensor in network domain measurement,a closed sensing network domain composed of eight-PIR-sensor array is proposed for the minimum sensing cell measurement in network domain and to realize the moving target perception and trajectory prediction. Moreover,the feasibility and accuracy of the proposed method are verified through experiments. The experimental results demonstrate that the maximum error between the real trajectory and the predicted trajectory of the minimum sensing cell measurement method is 0.64 m,which can achieve infrared target perception and moving trajectory prediction.
文摘To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.