Coupling plane wave into a single-mode fiber (SMF) with high and steady coupling efficiency is crucial for fiber- based free-space laser systems, where random angular jitters are the main influencing factors of fibe...Coupling plane wave into a single-mode fiber (SMF) with high and steady coupling efficiency is crucial for fiber- based free-space laser systems, where random angular jitters are the main influencing factors of fiber coupling. In this paper, we verified a new adaptive-optic device named adaptive fiber coupler (AFC) which could compensate angular jitters and improve the SMF coupling efficiency in some degree. Experiments of SMF coupling under the angular jitter situation using AFC have been achieved. Stochastic parallel gradient descent (SPGD) algorithm is employed as the control strategy, of which the iteration rate is 625 Hz. In closed loop, the coupling efficiency keeps above 65% when angular errors are below 80/3tad. The compensation bandwidth is 35 Hz at sine-jitter of 15 ~rad amplitude with average coupling efficiency of above 60%. Also, experiments with simulated turbulence have been studied. The average coupling efficiency increases from 31.97% in open loop to 61.33% in closed loop, and mean square error (MSE) of coupling efficiency drops from 7.43% to 1.75%.展开更多
The beams of 980nm high-power LDs are analyzed, and the reasons that aspect ratio of LD beams is high are explained. It is certified by the test that cylindrical lens can efficiently compress the perpendicular diverge...The beams of 980nm high-power LDs are analyzed, and the reasons that aspect ratio of LD beams is high are explained. It is certified by the test that cylindrical lens can efficiently compress the perpendicular divergence angle of the beam. Some typical and popular lensed fibers were compared and analyzed according to coupling characteristics. The factors which affect the coupling efficiency and tolerance of the wedged-shaped GRIN tipped lensed fiber are pointed out, and some methods to reduce the coupling loss of the lensed fibers are proposed finally.展开更多
The cavity quantum electrodynamics (QED) system is a promising platform for quantum optics and quantum information experiments.Its core is the strong coupling between atoms and optical cavity,which causes difficulty i...The cavity quantum electrodynamics (QED) system is a promising platform for quantum optics and quantum information experiments.Its core is the strong coupling between atoms and optical cavity,which causes difficulty in the overlap between the atoms and the antinode of optical cavity mode.Here,we use a programmable movable optical dipole trap to load a cold atomic ensemble into an optical fiber microcavity and realize the strong coupling between the atoms and the optical cavity in which the coupling strength can be improved by polarization gradient cooling and adiabatic loading.By the measurement of vacuum Rabi splitting,the coupling strength can be as high as g_(N)=2π×400 MHz,which means the effective atom number is N_(eff)=16 and the collective cooperativity is C_(N)=1466.These results show that this experimental system can be used for cold atomic ensemble and cold molecule based cavity QED research.展开更多
This paper proposes a novel fibre structure aiming at distributed temperature and strain sensing. Utilizing Al2O3 and CeO2 as dopants to form a w-shaped acoustic waveguide, it realizes modal coupling between longitudi...This paper proposes a novel fibre structure aiming at distributed temperature and strain sensing. Utilizing Al2O3 and CeO2 as dopants to form a w-shaped acoustic waveguide, it realizes modal coupling between longitudinal acoustic modes of its inner and outer core layers, leading to a dual-peak or multi-peak Brillouin gain spectrum. The relationship between the acoustic mode coupling properties and the fibre materials, doping concentrations and structural parameters are investigated, showing that the positions of mode coupling points in acoustic dispersion curves and the coupling intensities can be designed flexibly. A specific fibre design for the discriminative sensing of temperature and strain under a pump wavelength of 1.55 μm is given. The responses of its Brillouin gain properties on temperature and strain are analysed theoretically, demonstrating its potential for distributed fibre Brillouin sensing.展开更多
In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of...In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.展开更多
We designed and fabricated a smart microcavity sensor with a vertically coupled structure on the end face of a multi-core fiber using two-photon lithography technology. The influence of gap in vertical coupling struct...We designed and fabricated a smart microcavity sensor with a vertically coupled structure on the end face of a multi-core fiber using two-photon lithography technology. The influence of gap in vertical coupling structure on the resonance characteristics of bonding and anti-bonding modes in the transmission spectrum was studied through simulation and experiments. The results indicate that the bonding and anti-bonding modes generated by the vertical coupling of the two microcavities, as well as the changes in the radius and refractive index of the micro-toroid, and the distance between the microcavities caused by the absorption of vapor during the gas sensing process, exhibit different wavelength shifts for the two resonant modes. Smart microcavity sensors exhibit sensitivity and sensing characteristics. .展开更多
Integrated diffractive optical mode converter, consisting of a diffractive optical element (DOE) and a slab waveguide, is used for fiber-to-waveguide coupling. The phase of the DOE is generally designed by optimizatio...Integrated diffractive optical mode converter, consisting of a diffractive optical element (DOE) and a slab waveguide, is used for fiber-to-waveguide coupling. The phase of the DOE is generally designed by optimization algorithm. In this paper, the precise design, a new method with one more restrictive way, is adopted to design the diffractive optical mode converter for fiber-to-waveguide coupling. Through this method, the intensity of any point on the output plane is fully filled with the required demand. Compared with what previously published, the coupling loss of the precise designed converter is lower.展开更多
We report a low-fabrication-complexity and wideband fiber lens,which is formed by fiber facet etching and filling high refractive index UV adhesive.The optical field can be significantly shrunk by the facet lens so as...We report a low-fabrication-complexity and wideband fiber lens,which is formed by fiber facet etching and filling high refractive index UV adhesive.The optical field can be significantly shrunk by the facet lens so as to obtain improved optical coupling.Numerical simulations were carried out for different coupling conditions,on both fundamental mode and highorder mode,for a nine-mode fiber.The fundamental mode area can be reduced from 152.17 to 12.57μm^(~2),and the coupling loss between the fiber lens and a photonic waveguide can be reduced to-2.9 d B with over 1000 nm 3 d B bandwidth.展开更多
Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most o...Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.展开更多
Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and i...Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and international researchers have made significant advances in the areas of theory and methods,technology and systems,and ground experiments and flight tests.These advances have led to the development of OFS technology from the laboratory research stage to the engineering application stage.However,a few problems encountered in practical applications limit the wider application and further development of this technology,and thus urgently require solutions.This paper reviews the history of research on the deformation monitoring of flight vehicles.It examines various aspects of OFS-based deformation monitoring including the main varieties of OFS technology,technical advantages and disadvantages,suitability in aerospace applications,deformation reconstruction algorithms,and typical applications.This paper points out the key unresolved problems and the main evolution paradigms of engineering applications.It further discusses future development directions from the perspectives of an evolution paradigm,standardization,new materials,intelligentization,and collaboration.展开更多
Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This pa...Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse.展开更多
In this paper, the author analyzes characteristics and extracting method of interference signal of the distributed optical fiber sensing. In the distributed optical fiber sensing, realizing alarm and positioning funct...In this paper, the author analyzes characteristics and extracting method of interference signal of the distributed optical fiber sensing. In the distributed optical fiber sensing, realizing alarm and positioning function only through the cross-correlation operation will increase the load of the system, can make misinformation rate of the system be improved greatly. Therefore, before the localization algorithm, adding a interference signal feature recognition is very necessary, can reduce unnecessary operation loss and reduce the load of the system, also reducing the number of the false positives.展开更多
The micromechanical behaviors and mechanics-optics coupling effects of optic-fiber-concrete complex in the distributed optic-fiber sensing concrete-crack technology,which was used in health monitoring of Wu Gorge Brid...The micromechanical behaviors and mechanics-optics coupling effects of optic-fiber-concrete complex in the distributed optic-fiber sensing concrete-crack technology,which was used in health monitoring of Wu Gorge Bridge on Yangtze River and a large dam successfully,have been investigated.A micromechanical theoretical analysis method and micromechanical frictional contact bi-interface model,as well as a modified optical theoretical analysis method of the mechanics-optics coupling effects are presented.A series of verification experiments,including mechanical experiments and mechanics-optics coupling experiments,have been preformed.The results of micromechanical theoretical analysis and the analysis of the modified theory of mechanics-optics coupling along with mechanical and optical experimental data are shown to be in close agreement.Both the micromechanical theory and the modified theory of mechanics-optics coupling with their analysis methods can not only enhance credibility of this novel distributed sensing technology but also provide a way to understand its sensing mechanism and optimize its technical details and system.展开更多
In the field of optical fiber communication and sensing,polarization maintaining optical fiber with special polarization wave transmit character has been taken more and more attentions.It is more important of couple b...In the field of optical fiber communication and sensing,polarization maintaining optical fiber with special polarization wave transmit character has been taken more and more attentions.It is more important of couple between polarization modes,with the help of microdisturbed and coupled mode theories,the coupled characters of high birefracting Bow-Tie optical fiber in the condition of pure bend are analysed,and power coupling relationships between transmit modes are also derivated.展开更多
The structure of an intensity modulation optical fiber sensor is introduced. The principle of the sensor which can detect minor displacement by use of minor curve in dark ground is described. Complex experiment shows ...The structure of an intensity modulation optical fiber sensor is introduced. The principle of the sensor which can detect minor displacement by use of minor curve in dark ground is described. Complex experiment shows that the multimode optical fiber not only has the abilitly of detecting the displacement of less than 0.1 nm, but also exhibits characteristics of wide dynamic range and good linearety.展开更多
The Brillouin characteristics of step-index Ge–As–Se–Te(GAST)fibers at 2μm are designed and simulated on the basis of optical and acoustic properties.The refractive indexes of Ge_(20)As_(20)Se_(45)Te_(15)glass and...The Brillouin characteristics of step-index Ge–As–Se–Te(GAST)fibers at 2μm are designed and simulated on the basis of optical and acoustic properties.The refractive indexes of Ge_(20)As_(20)Se_(45)Te_(15)glass and Ge_(20)As_(20)Se_(43)Te_(17)glass serving as fiber core and cladding are 3.20 and 3.18 at 2μm,and their acoustic velocities are 2200 m/s and 2300 m/s,respectively.Numerical results indicate that the stimulated Brillouin scattering(SBS)efficiency is 248 m^(-1)·W^(-1),and the Brillouin threshold power is 66 m W when the core diameter of the 2-m-long GAST fiber is 4μm at 2-μm wavelength.The optic–acoustic coupling factor,the Brillouin frequency shift,and the Brillouin gain coefficient are 0.98,7.02 GHz,and 3.81×10^(-9)m/W,respectively.The SBS effect of GAST fibers simulated for the first time provides a new promising approach to selecting gain medium based on 2-μm-wavelength fiber laser.展开更多
This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumf...This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.展开更多
We demonstrate a distributed two-dimensional(2D)strain-sensing system in optical frequency domain reflectometry(OFDR)with an Archimedean spiral arrangement of the sensing fiber.The Archimedean spiral describes a simpl...We demonstrate a distributed two-dimensional(2D)strain-sensing system in optical frequency domain reflectometry(OFDR)with an Archimedean spiral arrangement of the sensing fiber.The Archimedean spiral describes a simple relationship between the radial radius and polar angle,such that each circle(the polar angle from0 to 2π)can sense the 2D strain in all directions.The strain between two adjacent circles can also be easily obtained because an Archimedean spiral facilitates sensing of every angle covering the full 2D range.Based on the mathematical relation of Archimedean spirals,we deduce the relationship between the one-dimensional position of the sensing fiber and 2D distribution in polar coordinates.The results of the experiment show that an Archimedean spiral arrangement system can achieve 2D strain sensing with different strain load angles.展开更多
At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on...At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on phase-sensitive coherentoptical time domain reflectometry(Ф-COTDR) with the practi-cal pattern recognition function. We use fast Fourier trans-form(FFT) to exact features from intrusion events and a multi-class classification algorithm derived from support vector ma-chine(SVM) to work as a pattern recognition technique. Fivedifferent types of events are classified by using a classifica-tion algorithm based on SVM through a three-dimensional fea-ture vector. Moreover, the identification results of the patternrecognition system show that an identification accurate rate of92.62% on average can be achieved.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 61205069).
文摘Coupling plane wave into a single-mode fiber (SMF) with high and steady coupling efficiency is crucial for fiber- based free-space laser systems, where random angular jitters are the main influencing factors of fiber coupling. In this paper, we verified a new adaptive-optic device named adaptive fiber coupler (AFC) which could compensate angular jitters and improve the SMF coupling efficiency in some degree. Experiments of SMF coupling under the angular jitter situation using AFC have been achieved. Stochastic parallel gradient descent (SPGD) algorithm is employed as the control strategy, of which the iteration rate is 625 Hz. In closed loop, the coupling efficiency keeps above 65% when angular errors are below 80/3tad. The compensation bandwidth is 35 Hz at sine-jitter of 15 ~rad amplitude with average coupling efficiency of above 60%. Also, experiments with simulated turbulence have been studied. The average coupling efficiency increases from 31.97% in open loop to 61.33% in closed loop, and mean square error (MSE) of coupling efficiency drops from 7.43% to 1.75%.
文摘The beams of 980nm high-power LDs are analyzed, and the reasons that aspect ratio of LD beams is high are explained. It is certified by the test that cylindrical lens can efficiently compress the perpendicular divergence angle of the beam. Some typical and popular lensed fibers were compared and analyzed according to coupling characteristics. The factors which affect the coupling efficiency and tolerance of the wedged-shaped GRIN tipped lensed fiber are pointed out, and some methods to reduce the coupling loss of the lensed fibers are proposed finally.
基金supported by the Innovation Program for Quantum Science and Technology (No.2021ZD0301200)the National Natural Science Foundation of China (Nos.11804330 and 11821404)the Fundamental Research Funds for the Central Universities (WK2470000038)。
文摘The cavity quantum electrodynamics (QED) system is a promising platform for quantum optics and quantum information experiments.Its core is the strong coupling between atoms and optical cavity,which causes difficulty in the overlap between the atoms and the antinode of optical cavity mode.Here,we use a programmable movable optical dipole trap to load a cold atomic ensemble into an optical fiber microcavity and realize the strong coupling between the atoms and the optical cavity in which the coupling strength can be improved by polarization gradient cooling and adiabatic loading.By the measurement of vacuum Rabi splitting,the coupling strength can be as high as g_(N)=2π×400 MHz,which means the effective atom number is N_(eff)=16 and the collective cooperativity is C_(N)=1466.These results show that this experimental system can be used for cold atomic ensemble and cold molecule based cavity QED research.
基金supported in part by the National Natural Science Foundation of China (Grant No. 60777032)973 Program of China(Grant No. 2010CB327600)the Science Foundation of Beijing (Grant No. 4102028)
文摘This paper proposes a novel fibre structure aiming at distributed temperature and strain sensing. Utilizing Al2O3 and CeO2 as dopants to form a w-shaped acoustic waveguide, it realizes modal coupling between longitudinal acoustic modes of its inner and outer core layers, leading to a dual-peak or multi-peak Brillouin gain spectrum. The relationship between the acoustic mode coupling properties and the fibre materials, doping concentrations and structural parameters are investigated, showing that the positions of mode coupling points in acoustic dispersion curves and the coupling intensities can be designed flexibly. A specific fibre design for the discriminative sensing of temperature and strain under a pump wavelength of 1.55 μm is given. The responses of its Brillouin gain properties on temperature and strain are analysed theoretically, demonstrating its potential for distributed fibre Brillouin sensing.
文摘In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.
文摘We designed and fabricated a smart microcavity sensor with a vertically coupled structure on the end face of a multi-core fiber using two-photon lithography technology. The influence of gap in vertical coupling structure on the resonance characteristics of bonding and anti-bonding modes in the transmission spectrum was studied through simulation and experiments. The results indicate that the bonding and anti-bonding modes generated by the vertical coupling of the two microcavities, as well as the changes in the radius and refractive index of the micro-toroid, and the distance between the microcavities caused by the absorption of vapor during the gas sensing process, exhibit different wavelength shifts for the two resonant modes. Smart microcavity sensors exhibit sensitivity and sensing characteristics. .
文摘Integrated diffractive optical mode converter, consisting of a diffractive optical element (DOE) and a slab waveguide, is used for fiber-to-waveguide coupling. The phase of the DOE is generally designed by optimization algorithm. In this paper, the precise design, a new method with one more restrictive way, is adopted to design the diffractive optical mode converter for fiber-to-waveguide coupling. Through this method, the intensity of any point on the output plane is fully filled with the required demand. Compared with what previously published, the coupling loss of the precise designed converter is lower.
基金the National Key R&D Program of China(No.2018YFB1801804)the National Natural Science Foundation of China(NSFC)(Nos.61935011,61875124,and 61675128).
文摘We report a low-fabrication-complexity and wideband fiber lens,which is formed by fiber facet etching and filling high refractive index UV adhesive.The optical field can be significantly shrunk by the facet lens so as to obtain improved optical coupling.Numerical simulations were carried out for different coupling conditions,on both fundamental mode and highorder mode,for a nine-mode fiber.The fundamental mode area can be reduced from 152.17 to 12.57μm^(~2),and the coupling loss between the fiber lens and a photonic waveguide can be reduced to-2.9 d B with over 1000 nm 3 d B bandwidth.
基金funding support from the Israeli Ministry of Housing and Construction(Grant No.2028286).
文摘Confinement of rock bolts by the surrounding rock formation has long been recognized as a positive contributor to the pull-out behavior,yet only a few experimental works and analytical models have been reported,most of which are based on the global rock bolt response evaluated in pull-out tests.This paper presents a laboratory experimental setup aiming to capture the rock formation effect,while using distributed fiber optic sensing to quantify the effect of the confinement and the reinforcement pull-out behavior on a more local level.It is shown that the behavior along the sample itself varies,with certain points exhibiting stress drops with crack formation.Some edge effects related to the kinematic freedom of the grout to dilate are also observed.Regardless,it was found that the mid-level response is quite similar to the average response along the sample.The ability to characterize the variation of the response along the sample is one of the many advantages high-resolution fiber optic sensing allows in such investigations.The paper also offers a plasticity-based hardening load transfer function,representing a"slice"of the anchor.The paper describes in detail the development of the model and the calibration/determination of its parameters.The suggested model captures well the coupled behavior in which the pull-out process leads to an increase in the confining stress due to dilative behavior.
基金funded by the National Natural Science Foundation of China(51705024,51535002,51675053,61903041,61903042,and 61903041)the National Key Research and Development Program of China(2016YFF0101801)+4 种基金the National Hightech Research and Development Program of China(2015AA042308)the Innovative Equipment Pre-Research Key Fund Project(6140414030101)the Manned Space Pre-Research Project(20184112043)the Beijing Municipal Natural Science Foundation(F7202017 and 4204101)the Beijing Nova Program of Science and Technology(Z191100001119052)。
文摘Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and international researchers have made significant advances in the areas of theory and methods,technology and systems,and ground experiments and flight tests.These advances have led to the development of OFS technology from the laboratory research stage to the engineering application stage.However,a few problems encountered in practical applications limit the wider application and further development of this technology,and thus urgently require solutions.This paper reviews the history of research on the deformation monitoring of flight vehicles.It examines various aspects of OFS-based deformation monitoring including the main varieties of OFS technology,technical advantages and disadvantages,suitability in aerospace applications,deformation reconstruction algorithms,and typical applications.This paper points out the key unresolved problems and the main evolution paradigms of engineering applications.It further discusses future development directions from the perspectives of an evolution paradigm,standardization,new materials,intelligentization,and collaboration.
基金support provided by the National Natural Science Foundation of China(Grant Nos.42225702,and 42077232)the Open Research Project Program of the State Key Laboratory of Internet of Things for Smart City(University of Macao)(Grant No.SKL-IoTSC(UM)-2021-2023/ORP/GA10/2022).
文摘Anthropogenic activity-induced sinkholes pose a serious threat to building safety and human life nowadays.Real-time detection and early warning of sinkhole formation are a key and urgent problem in urban areas.This paper presents an experimental study to evaluate the feasibility of fiber optic strain sensing nerves in sinkhole monitoring.Combining the artificial neural network(ANN)and particle image velocimetry(PIV)techniques,a series of model tests have been performed to explore the relationship between strain measurements and sinkhole development and to establish a conversion model from strain data to ground settlements.It is demonstrated that the failure mechanism of the soil above the sinkhole developed from a triangle failure plane to a vertical failure plane with increasing collapse volume.Meanwhile,the soil-embedded fiber optic strain sensing nerves allowed deformation monitoring of the ground soil in real time.Furthermore,the characteristics of the measured strain profiles indicate the locations of sinkholes and the associated shear bands.Based on the strain data,the ANN model predicts the ground settlement well.Additionally,micro-anchored fiber optic cables have been proven to increase the soil-to-fiber strain transfer efficiency for large deformation monitoring of ground collapse.
文摘In this paper, the author analyzes characteristics and extracting method of interference signal of the distributed optical fiber sensing. In the distributed optical fiber sensing, realizing alarm and positioning function only through the cross-correlation operation will increase the load of the system, can make misinformation rate of the system be improved greatly. Therefore, before the localization algorithm, adding a interference signal feature recognition is very necessary, can reduce unnecessary operation loss and reduce the load of the system, also reducing the number of the false positives.
基金supported by the National Natural Science Foundation of China and the Joint Foundation of Yalong River Hydropower Development (Grant No.50579094)
文摘The micromechanical behaviors and mechanics-optics coupling effects of optic-fiber-concrete complex in the distributed optic-fiber sensing concrete-crack technology,which was used in health monitoring of Wu Gorge Bridge on Yangtze River and a large dam successfully,have been investigated.A micromechanical theoretical analysis method and micromechanical frictional contact bi-interface model,as well as a modified optical theoretical analysis method of the mechanics-optics coupling effects are presented.A series of verification experiments,including mechanical experiments and mechanics-optics coupling experiments,have been preformed.The results of micromechanical theoretical analysis and the analysis of the modified theory of mechanics-optics coupling along with mechanical and optical experimental data are shown to be in close agreement.Both the micromechanical theory and the modified theory of mechanics-optics coupling with their analysis methods can not only enhance credibility of this novel distributed sensing technology but also provide a way to understand its sensing mechanism and optimize its technical details and system.
文摘In the field of optical fiber communication and sensing,polarization maintaining optical fiber with special polarization wave transmit character has been taken more and more attentions.It is more important of couple between polarization modes,with the help of microdisturbed and coupled mode theories,the coupled characters of high birefracting Bow-Tie optical fiber in the condition of pure bend are analysed,and power coupling relationships between transmit modes are also derivated.
文摘The structure of an intensity modulation optical fiber sensor is introduced. The principle of the sensor which can detect minor displacement by use of minor curve in dark ground is described. Complex experiment shows that the multimode optical fiber not only has the abilitly of detecting the displacement of less than 0.1 nm, but also exhibits characteristics of wide dynamic range and good linearety.
基金the National Natural Science Foundation of China(Grant Nos.61875094 and 62090064)the China Postdoctoral Science Foundation(Grant No.2018M642386)the K.C.Wong Magna Fund in Ningbo University。
文摘The Brillouin characteristics of step-index Ge–As–Se–Te(GAST)fibers at 2μm are designed and simulated on the basis of optical and acoustic properties.The refractive indexes of Ge_(20)As_(20)Se_(45)Te_(15)glass and Ge_(20)As_(20)Se_(43)Te_(17)glass serving as fiber core and cladding are 3.20 and 3.18 at 2μm,and their acoustic velocities are 2200 m/s and 2300 m/s,respectively.Numerical results indicate that the stimulated Brillouin scattering(SBS)efficiency is 248 m^(-1)·W^(-1),and the Brillouin threshold power is 66 m W when the core diameter of the 2-m-long GAST fiber is 4μm at 2-μm wavelength.The optic–acoustic coupling factor,the Brillouin frequency shift,and the Brillouin gain coefficient are 0.98,7.02 GHz,and 3.81×10^(-9)m/W,respectively.The SBS effect of GAST fibers simulated for the first time provides a new promising approach to selecting gain medium based on 2-μm-wavelength fiber laser.
基金support from the Institute of Crustal Dynamics,China Earthquake Administration(Grant No.ZDJ2016-20 and ZDJ2019-15)。
文摘This paper investigates the deformation and fracture propagation of sandstone specimen under uniaxial compression using the distributed fiber optic strain sensing(DFOSS)technology.It shows that the DFOSS-based circumferential strains are in agreement with the data monitored with the traditional strain gage.The DFOSS successfully scans the full-field view of axial and circumferential strains on the specimen surface.The spatiotemporal strain measurement based on DFOSS manifests crack closure and elastoplastic deformation,detects initialization of microcrack nucleation,and identifies strain localization within the specimen.The DFOSS well observes the effects of rock heterogeneity on rock deformation.The advantage of DFOSS-based strain acquisition includes the high spatiotemporal resolution of signals and the ability of full-surface strain scanning.The introduction to the DFOSS technology yields a better understanding of the rock damage process under uniaxial compression.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.61505138,61635008,61475114,61735011)in part by the Tianjin Science and Technology Support Plan Program Funding(Grant No.16JCQNJC01800)+2 种基金in part by the China Postdoctoral Science Foundation(Grant Nos.2015M580199,2016T90205)in part by the National Instrumentation Program(Grant No.2013YQ030915)in part by the National Key Research and Development Program(Grant No.2016YFC0100500)
文摘We demonstrate a distributed two-dimensional(2D)strain-sensing system in optical frequency domain reflectometry(OFDR)with an Archimedean spiral arrangement of the sensing fiber.The Archimedean spiral describes a simple relationship between the radial radius and polar angle,such that each circle(the polar angle from0 to 2π)can sense the 2D strain in all directions.The strain between two adjacent circles can also be easily obtained because an Archimedean spiral facilitates sensing of every angle covering the full 2D range.Based on the mathematical relation of Archimedean spirals,we deduce the relationship between the one-dimensional position of the sensing fiber and 2D distribution in polar coordinates.The results of the experiment show that an Archimedean spiral arrangement system can achieve 2D strain sensing with different strain load angles.
文摘At present, the demand for perimeter security system is in-creasing greatly, especially for such system based on distribut-ed optical fiber sensing. This paper proposes a perimeter se-curity monitoring system based on phase-sensitive coherentoptical time domain reflectometry(Ф-COTDR) with the practi-cal pattern recognition function. We use fast Fourier trans-form(FFT) to exact features from intrusion events and a multi-class classification algorithm derived from support vector ma-chine(SVM) to work as a pattern recognition technique. Fivedifferent types of events are classified by using a classifica-tion algorithm based on SVM through a three-dimensional fea-ture vector. Moreover, the identification results of the patternrecognition system show that an identification accurate rate of92.62% on average can be achieved.