期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
The strain rate sensitive and anisotropic behavior of rare-earth magnesium alloy ZEK100 sheet 被引量:2
1
作者 H.Wang X.Sun +4 位作者 S.Kurukuri M.J.Worswick D.Y.Li Y.H.Peng P.D.Wu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期882-891,共10页
To overcome the limitation in formability at room temperature,manufacturers have developed magnesium alloys with remarkable properties by adding rare-earth elements.The rare-earth magnesium alloys behave differently f... To overcome the limitation in formability at room temperature,manufacturers have developed magnesium alloys with remarkable properties by adding rare-earth elements.The rare-earth magnesium alloys behave differently from the conventional alloys,especially with respect to their coupled anisotropic and strain rate sensitive behavior.In the current work,such behavior of the rare-earth Mg alloy ZEK100 sheet at room temperature is investigated with the aid of the elastic viscoplastic self-consistent polycrystal plasticity model.Different strain rate sensitivities(SRSs)for various deformation modes are employed by the model to simulate the strain rate sensitive behaviors under different loading directions and loading rates.Good agreement between the experiments and simulations reveals the importance and necessity of using different SRSs for each deformation mode in hexagonal close-packed metals.Furthermore,the relative activities of each deformation mode and the texture evolution during different loadings are discussed.The anisotropic and strain rate sensitive behavior is ascribed to the various operating deformation modes with different SRSs during loading along different directions. 展开更多
关键词 Rare-earth magnesium alloy Strain rate sensitivity TWINNING Crystal plasticity
下载PDF
Effect of ionizing radiation on dual 8-bit analog-to-digital converters (AD9058) with various dose rates and bias conditions 被引量:1
2
作者 李兴冀 刘超铭 +2 位作者 孙中亮 肖立伊 何世禹 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第9期629-633,共5页
The radiation effects on several properties (reference voltage, digital output logic voltage, and supply current) of dual 8-bit analog-to-digital (A/D) converters (AD9058) under various biased conditions are inv... The radiation effects on several properties (reference voltage, digital output logic voltage, and supply current) of dual 8-bit analog-to-digital (A/D) converters (AD9058) under various biased conditions are investigated in this paper. Gamma ray and 10-MeV proton irradiation are selected for a detailed evaluation and comparison. Based on the measurement results induced by the gamma ray with various dose rates, the devices exhibit enhanced low dose rate sensitivity (ELDRS) under zero and working bias conditions. Meanwhile, it is obvious that the ELDRS is more severe under the working bias condition than under the zero bias condition. The degradation of AD9058 does not display obvious ELDRS during 10-MeV proton irradiation with the selected flux. 展开更多
关键词 analog-to-digital converters enhanced low dose rate sensitivities (ELDRS) gamma ray and protonirradiation lower/high-dose rate
下载PDF
Nanomechanics of Mg-Gd-Y-Nd-Zn alloy with LPSO and MgRE phases
3
作者 H.Vafaeenezhad S.Aliakbari-Sani +2 位作者 A.Kalaki G.R.Ebrahimi J.Hirsch 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3370-3393,共24页
The mechanical properties of two main precipitating phases(LPSO and MgRE)and matrix in Mg-Gd-Y-Nd-Zn bioalloy were examined using nanoindentation method.A new is suggested for characterizing the elastic-plastic behavi... The mechanical properties of two main precipitating phases(LPSO and MgRE)and matrix in Mg-Gd-Y-Nd-Zn bioalloy were examined using nanoindentation method.A new is suggested for characterizing the elastic-plastic behavior,fracture toughness and strain rate sensitivity(SRS)of materials within micro/nanoscale.Firstly,a nanomechanical model was developed for extracting hardness(H),young’s modulus(E)and yield stress(σY)from the characteristic load points which were subsequently analyzed by atomic force microscope(AFM)images.The elasticity data and AFM data were then utilized for determination of plastic deformation in constituent phases.The displacement of the indentation gets the highest value for Mg matrix and between precipitates,depth is more in LPSO rather than that of MgRE.The serrated flow or the behavior of shear bands may originate from the side effect of the interface region in Mg alloys with precipitates.It can be deduced that the KIC produced by both L method and energy-based calculation are both reliable for KIC approximation.The maximum load in simulation withμ=0.2 friction is marginally lesser than that of the frictionless(μ=0)one while elastic recovery of indentation withμ=0.2 is higher to some extent. 展开更多
关键词 Long period stacking ordered(LPSO)phase NANOINDENTATION Elastic-plastic behavior Finite element method(FEM) Fracture toughness Strain rate sensitivity(SRS)
下载PDF
Effect of initial microstructure on hot workability of 7085 aluminum alloy 被引量:5
4
作者 陈送义 陈康华 +1 位作者 彭国胜 贾乐 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期956-963,共8页
The hot workability of 7085 aluminum alloys with different initial microstructures (as-homogenized and as-solution treated) was studied by isothermal compression tests at the deformation temperature ranging from 300... The hot workability of 7085 aluminum alloys with different initial microstructures (as-homogenized and as-solution treated) was studied by isothermal compression tests at the deformation temperature ranging from 300 to 450 ℃ and the strain rate ranging from 0.0001 to 1 s 1. The strain rate sensitivity of the alloy was evaluated and used for establishing the power dissipation maps and instability maps on the basis of the flow stress data. The results show that the efficiency of power dissipation for the as-homogenized alloy is lower than that of the as-solution treated alloy. The deformation parameters of the dynamic recrystallization for the as-homogenized and as-solution treated alloy occur at 400 ℃, 0.01 s i and 450 ℃, 0.001 s-1, respectively. The flow instability region of the as-homogenized alloy is narrower than that of the as-solution treated alloy. These differences of the alloys with two different initial microstructures on the processing maps are mainly related to the dynamic precipitation characteristics. 展开更多
关键词 7085 aluminum alloy initial microstructure hot workability processing map strain rate sensitivity
下载PDF
Uniaxial compressive behavior of equal channel angular pressing Al at wide temperature and strain rate range 被引量:1
5
作者 汤忠斌 索涛 +3 位作者 张部声 李玉龙 赵峰 范学领 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2447-2452,共6页
Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress,... Uniaxial compressive experiments of ultrafine-grained Al fabricated by equal channel angular pressing(ECAP) method were performed at wide temperature and strain rate range. The influence of temperature on flow stress, strain hardening rate and strain rate sensitivity was investigated experimentally. The results show that both the effect of temperature on flow stress and its strain rate sensitivity of ECAPed Al is much larger than those of the coarse-grained Al. The temperature sensitivity of ultrafine-grained Al is comparatively weaker than that of the coarse-grained Al. Based on the experimental results, the apparent activation volume was estimated at different temperatures and strain rates. The forest dislocation interactions is the dominant thermally activated mechanism for ECAPed Al compressed at quasi-static strain rates, while the viscous drag plays an important role at high strain rates. 展开更多
关键词 ultrafine-grained materials equal channel angular pressing AL mechanical behavior strain rate sensitivity temperature dependence activation volume
下载PDF
Plastic flow behavior of superalloy GH696 during hot deformation 被引量:1
6
作者 许赵华 李淼泉 李宏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期712-721,共10页
In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the de... In order to investigate the hot deformation behavior of superalloy GH696, isothermal compression experiments were carried out at deformation temperatures of 880?1120 °C and strain rates of 0.01?10 s?1. And the deformation amount of all the samples was 50%. The strain rate sensitivity exponent (m) and strain hardening exponent (n) under different deformation conditions were calculated, meanwhile the effects of the processing parameters on the values ofm andn were analyzed. The results show that the flow stress increases with the increase of strain rate and the decrease of deformation temperature. The value ofm increases with the increase of deformation temperature and decreases with the increase of strain rate, while the value ofn decreases with the increase of deformation temperature. A novel flow stress model during hot deformation of superalloy GH696 was also established. And the calculated flow stress of the alloy is in good agreement with the experimental one. 展开更多
关键词 superalloy GH696 flow stress deformation behavior strain rate sensitivity exponent strain hardening exponent flow stress model
下载PDF
On the behaviour characterization of metallic cellular materials under impact loading 被引量:4
7
作者 Dai-Ning Fang Yu-Long Li Han Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第6期837-846,共10页
This paper reviews the common mechanical features of the metallic cellular material under impact loading as well as the characterization methods of such behaviours. The main focus is on the innovations of various test... This paper reviews the common mechanical features of the metallic cellular material under impact loading as well as the characterization methods of such behaviours. The main focus is on the innovations of various testing methods at impact loading rates.Following aspects were discussed in details.(1) The use of soft nylon Hopkinson/Kolsky bar for an enhanced measuring accuracy in order to assess if there is a strength enhancement or not for this class of cellular materials under moderate impact loading;(2) The use of digital image correlations to determine the strain fields during the tests to confirm the existence of a pseudo-shock wave propagation inside the cellular material under high speed impact: (3) The use of new combined shear compression device to determine the loading envelop of cellular materials under impact multiaxial loadings. 展开更多
关键词 Foam HONEYCOMB LATTICE Hopkinson bar Rate sensitivity
下载PDF
Effect of strain rate on the compressive deformation behaviors of lotus-type porous copper 被引量:4
8
作者 Xin-hua Liu Hai-you Huang Jian-xin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第7期687-695,共9页
Lotus-type porous copper was fabricated by unidirectional solidification, and compressive experiments were subsequently conducted in the strain rate range of 10-3-2400 s-1 with the compressive direction parallel to th... Lotus-type porous copper was fabricated by unidirectional solidification, and compressive experiments were subsequently conducted in the strain rate range of 10-3-2400 s-1 with the compressive direction parallel to the pores. A GLEEBLE-1500 thermal-mechanical simulation system and a split Hopkinson pressure bar (SHPB) were used to investigate the effect of strain rate on the compressive deforma-tion behaviors of lotus-type porous copper. The influence mechanism of strain rate was also analyzed by the strain-controlling method and by high-speed photography. The results indicated that the stress-strain curves of lotus-typed porous copper consist of a linear elastic stage, a plateau stage, and a densification stage at various strain rates. At low strain rate (〈1.0 s^-1), the strain rate had little influence on the stress-strain curves; but when the strain rate exceeded 1.0 s^-1, it was observed to strongly affect the plateau stage, showing obvious strain-rate-hardening characteristics. Strain rate also influenced the densification initial strain. The densification initial strain at high strain rate was less than that at low strain rate. No visible inhomogeneous deformation caused by shockwaves was observed in lotus-type porous copper during high-strain-rate deformation. However, at high strain rate, the bending deformation characteristics of the pore walls obviously differed from those at low strain rate, which was the main mechanism by which the plateau stress exhibited strain-rate sensitivity when the strain rate exceeded a certain value and exhibited less densification initial strain at high strain rate. 展开更多
关键词 porous materials COPPER directional solidification strain rate sensitivity deformation modes stress-strain curves
下载PDF
Uncovering the creep deformation mechanism of rock-forming minerals using nanoindentation 被引量:3
9
作者 Zhaoyang Ma Chengpeng Zhang +1 位作者 Ranjith Pathegama Gamage Guanglei Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期283-294,共12页
The creep phenomenon of rocks is quite complex and the creep mechanisms are far from being well understood.Although laboratory creep tests have been carried out to determine the creep deformation of various rocks,thes... The creep phenomenon of rocks is quite complex and the creep mechanisms are far from being well understood.Although laboratory creep tests have been carried out to determine the creep deformation of various rocks,these tests are expensive and time-consuming.Nanoindentation creep tests,as an alternative method,can be performed to investigate the mechanical and viscoelastic properties of granite samples.In this study,the reduced Young’s modulus,hardness,fracture toughness,creep strain rate,stress exponent,activation volume and maximum creep displacement of common rock-forming minerals of granite were calculated from nanoindentation results.It was found that the hardness decreases with the increase of holding time and the initial decrease in hardness was swift,and then it decreased slowly.The stress exponent values obtained were in the range from 4.5 to 22.9,which indicates that dislocation climb is the creep deformation mechanism.In addition,fracture toughness of granite’s rock-forming minerals was calculated using energy-based method and homogenization method was adopted to upscale the micro-scale mechanical properties to macro-scale mechanical properties.Last but not least,both three-element Voigt model and Burgers model fit the nanoindentation creep curves well.This study is beneficial to the understanding of the long-term mechanical properties of rock samples from a microscale perspective,which is of great significance to the understanding of localized deformation processes of rocks. 展开更多
关键词 NANOINDENTATION GRANITE Time-dependent creep Stress exponent Strain rate sensitivity Fracture toughness
下载PDF
Strain-hardening and warm deformation behaviors of extruded Mg-Sn-Yb alloy sheet 被引量:4
10
作者 Jing Jiang Guangli Bi +3 位作者 Guoyong Wang Qing Jiang Jianshe Lian Zhonghao Jiang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第2期116-123,共8页
Strain-hardening and warm deformation behaviors of extruded Mg-2Sn-0.5Yb alloy(at.%)sheet were investigated in uniaxial tensile test at temperatures of 25-250 ℃ and strain rates of 1×10^(−3) s^(−1)-0.1 s^(−1).Th... Strain-hardening and warm deformation behaviors of extruded Mg-2Sn-0.5Yb alloy(at.%)sheet were investigated in uniaxial tensile test at temperatures of 25-250 ℃ and strain rates of 1×10^(−3) s^(−1)-0.1 s^(−1).The data fit with the Kocks-Mecking type plots were used to show different stages of strain hardening.Besides III-stage and IV-stage,the absence of the II-stage strain hardening at room temperature should be related to the sufficient dynamic recrystallization during extrusion.The decrease of strain hardening ability of the alloy after yielding was attributed to the reduction of dislocation density with increasing testing temperature.Strain rate sensitivity(SRS)was significantly enhanced with increasing temperature,and the corresponding m-value was calculated as 0.07-0.12,which indicated that the deformation mechanism was dominated by the climb-controlled dislocation creep at 200 ℃.Furthermore,the grain boundary sliding(GBS)was activated at 250 ℃,which contributed to the higher SRS.The activation energy was calculated as 213.67 kJ mol^(−1),which was higher than that of lattice diffusion or grain boundary self-diffusion.In addition,the alloy exhibited a quasi superplasticity at 250 ℃ with a strain rate of 1×10^(−3) s^(−1),which was mainly related to the fine microstructure and the presence of the Mg2Sn and Mg2(Sn,Yb)particles. 展开更多
关键词 Mg-Sn-Yb alloy sheet Strain hardening Strain rate sensitivity Activation energy
下载PDF
Flow behavior and fracture of Al−Mg−Si alloy at cryogenic temperatures 被引量:3
11
作者 Danielle Cristina Camilo MAGALHAES Andrea Madeira KLIAUGA Vitor Luiz SORDI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期595-608,共14页
The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile... The tensile and fracture behaviors of AA6061 alloy were investigated in order to provide quantitative data about this alloy at cryogenic temperatures.Specimens of AA6061 alloy were solution heat treated before tensile tests at 298,173 and 77 K and tested at strain rates in the range from 0.1 to 0.0001 s^(−1).The results indicate the suppression of the Portevin−Le Chatelier(PLC)effect and dynamic strain aging(DSA)at 77 K.In contrast,at 298 K,a remarkable serrated flow,characteristic of the PLC effect,is observed.Furthermore,the tensile behavior at 77 K,compared with that observed at 173 and 298 K,shows a simultaneous increase in strength,uniform elongation,modulus of toughness,strain-hardening exponent and strain rate sensitivity,which is related to a decrease in the dynamic recovery rate at low temperature.These responses are reflected on the fracture morphology,since the dimple size decreases at 77 K,while the area covered by dimples increases.Comparisons of the Johnson−Cook model show that a good agreement can be obtained for tests at 173 and 77 K,in which DSA is suppressed. 展开更多
关键词 cryogenic temperature aluminum alloy flow behavior strain rate sensitivity work-hardening behavior Johnson−Cook model FRACTURE
下载PDF
Strain hardening behavior, strain rate sensitivity and hot deformation maps of AISI 321 austenitic stainless steel 被引量:3
12
作者 Mehdi Shaban Ghazani Beitallah Eghbali 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第11期1799-1810,共12页
Hot compression tests were performed on AISI 321 austenitic stainless steel in the deformation temperature range of 800–1200℃ and constant strain rates of 0.001,0.01,0.1,and 1 s^(−1).Hot flow curves were used to det... Hot compression tests were performed on AISI 321 austenitic stainless steel in the deformation temperature range of 800–1200℃ and constant strain rates of 0.001,0.01,0.1,and 1 s^(−1).Hot flow curves were used to determine the strain hardening exponent and the strain rate sensitivity exponent,and to construct the processing maps.Variations of the strain hardening exponent with strain were used to predict the microstructural evolutions during the hot deformation.Four variations were distinguished reflecting the different microstructural changes.Based on the analysis of the strain hardening exponent versus strain curves,the microstructural evolutions were dynamic recovery,single and multiple peak dynamic recrystallization,and interactions between dynamic recrystallization and precipitation.The strain rate sensitivity variations at an applied strain of 0.8 and strain rate of 0.1 s^(−1) were compared with the microstructural evolutions.The results demonstrate the existence of a reliable correlation between the strain rate sensitivity values and evolved microstructures.Additionally,the power dissipation map at the applied strain of 0.8 was compared with the resultant microstructures at predetermined deformation conditions.The microstructural evolutions strongly correlated to the power dissipation ratio,and dynamic recrystallization occurred completely at lower power dissipation ratios. 展开更多
关键词 strain hardening strain rate sensitivity processing map AISI 321 austenitic stainless steel hot compression
下载PDF
Effect of processing parameters on flow behaviors and microstructure during high temperature deformation of GH4586 superalloy 被引量:3
13
作者 LUO Jiao LI Xiang-yang +1 位作者 LI Cong LI Miao-quan 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期338-350,共13页
The apparent activation energy for deformation(Q)and strain rate sensitivity(m)of GH4586 superalloy are calculated and the variation trend is reasonably explained by the microstructure observations.Constitutive modell... The apparent activation energy for deformation(Q)and strain rate sensitivity(m)of GH4586 superalloy are calculated and the variation trend is reasonably explained by the microstructure observations.Constitutive modelling of this superalloy is established and the processing maps at different strains are constructed.The results show that the Q value is in the range of 751.22−878.29 kJ/mol.At a temperature of 1060°C,strain rate of 0.001 s^(−1),and strain of 0.65,the m value of GH4586 superalloy reaches a maximum of 0.42.The optimal processing parameter of GH4586 superalloy is at a deformation temperature of 1050°C and a strain rate of 0.001 s^(−1).The domains of flow instability notably expand with increasing strain during high temperature deformation of GH4586 superalloy. 展开更多
关键词 GH4586 superalloy apparent activation energy for deformation strain rate sensitivity constitutive model processing maps
下载PDF
DETERMINATION OF THE PARAMETERS OF SUPERPLASTIC FORMING FOR LONG RECTANGULAR THIN SHEET TITANIUM ALLOY Ti-6A1-4V 被引量:2
14
作者 R. V. Safiullin, R.A. Vasin and F. U. Enikeev Institute for Metals Superplasticity Problems Khalturina, 39, Ufa, 450001, Russia 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期567-573,共7页
A method for determining the value of the strain rate sensitivity parameter m, of a thin sheet superplastic material, which is based on the results of constant gas pressure tests, has been developed in this paper. Unl... A method for determining the value of the strain rate sensitivity parameter m, of a thin sheet superplastic material, which is based on the results of constant gas pressure tests, has been developed in this paper. Unlike the conventional procedures the method involved provides the test conditions similar to those occurring during an industrial technological process. Such an approach enables one to estimate reliable the superplas- tic properties of the material under study. Theoretical analysis is based upon use of the standard equations of the membrane theory. The experimental investigations have been carried out for Ti-based alloy VT6 (Ti--6Al-4V). Theoretical predictions show satisfactory agreement with experimental data. The results obtained are compared with those measured by means of standard procedures (constant cross-head velocity experiments and load relaxation tests). It is shown that the use of specimens having reduced gage length (which is less than specimen's width) could lead to considerable errors in experimental estimation of the m value which, in its turn, leads to inaccurate calculating the technological parameters. 展开更多
关键词 SUPERPLASTICITY mechanical property strain rate sensitivity titanium alloy
下载PDF
Strain rate sensitivity of closed cell aluminium fly ash foam 被引量:2
15
作者 Manmohan DASS GOEL VASANT A.MATSAGAR +1 位作者 Anil K.GUPTA Steffen MARBURG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1080-1089,共10页
With the increasing use of metal foams in various engineering applications, investigation of their dynamic behaviour under varying strain rate is necessary. Closed cell aluminium fly ash foam developed through liquid ... With the increasing use of metal foams in various engineering applications, investigation of their dynamic behaviour under varying strain rate is necessary. Closed cell aluminium fly ash foam developed through liquid metallurgy route was investigated for its stress--strain behaviour at different strain rates ranging from 700 s^-1 to 1950 s^-1. The numerical model of split Hopkinson pressure bar (SHPB) was simulated using commercially available finite element code Abaqus/Explicit. Validation of numerical simulation was carried out using available experimental and numerical results. Full scale stress--strain curves wez'e developed for various strain rates to study the effect of strain rate on compressive strength and energy absorption. The results showed that the closed cell aluminium fly ash foam is sensitive to strain rate. 展开更多
关键词 high strain rate metal foam strain rate sensitivity numerical simulation split Hopkinson pressure bar
下载PDF
ANALYTICAL EVALUATION OF PERMANENT DEFLECTION OF A THIN CIRCULAR PLATE STRUCK NORMALLY AT ITS CENTER BY A PROJECTILE 被引量:2
16
作者 Chen Liebin Yang Jialing 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第2期117-122,共6页
The permanent deflection of a thin circular plate struck normally at its center by a projectile is studied by an approximate theoretical analysis, FEM simulation and experiment. The plate made of rate sensitive and st... The permanent deflection of a thin circular plate struck normally at its center by a projectile is studied by an approximate theoretical analysis, FEM simulation and experiment. The plate made of rate sensitive and strain-hardening material undergoes serious local deformation but is not perforated during the impact. The theoretical analysis is based on an energy approach, in which the Cowper-Symonds equation is used for the consideration of strain rate sensitive effects and the parameters involved are determined with the aid of experimental data. The maximum permanent deflections predicted by the theoretical model are compared with those of FEM simulation and published papers obtained both by theory and experiment, and good agreement is achieved for a wide range of thickness of the plates and initial impact velocities. 展开更多
关键词 thin circular plate finite deflection impact strain rate sensitive STRAIN-HARDENING
下载PDF
A Novel Machine Learning-Based Hand Gesture Recognition Using HCI on IoT Assisted Cloud Platform 被引量:1
17
作者 Saurabh Adhikari Tushar Kanti Gangopadhayay +4 位作者 Souvik Pal D.Akila Mamoona Humayun Majed Alfayad N.Z.Jhanjhi 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2123-2140,共18页
Machine learning is a technique for analyzing data that aids the construction of mathematical models.Because of the growth of the Internet of Things(IoT)and wearable sensor devices,gesture interfaces are becoming a mo... Machine learning is a technique for analyzing data that aids the construction of mathematical models.Because of the growth of the Internet of Things(IoT)and wearable sensor devices,gesture interfaces are becoming a more natural and expedient human-machine interaction method.This type of artificial intelligence that requires minimal or no direct human intervention in decision-making is predicated on the ability of intelligent systems to self-train and detect patterns.The rise of touch-free applications and the number of deaf people have increased the significance of hand gesture recognition.Potential applications of hand gesture recognition research span from online gaming to surgical robotics.The location of the hands,the alignment of the fingers,and the hand-to-body posture are the fundamental components of hierarchical emotions in gestures.Linguistic gestures may be difficult to distinguish from nonsensical motions in the field of gesture recognition.Linguistic gestures may be difficult to distinguish from nonsensical motions in the field of gesture recognition.In this scenario,it may be difficult to overcome segmentation uncertainty caused by accidental hand motions or trembling.When a user performs the same dynamic gesture,the hand shapes and speeds of each user,as well as those often generated by the same user,vary.A machine-learning-based Gesture Recognition Framework(ML-GRF)for recognizing the beginning and end of a gesture sequence in a continuous stream of data is suggested to solve the problem of distinguishing between meaningful dynamic gestures and scattered generation.We have recommended using a similarity matching-based gesture classification approach to reduce the overall computing cost associated with identifying actions,and we have shown how an efficient feature extraction method can be used to reduce the thousands of single gesture information to four binary digit gesture codes.The findings from the simulation support the accuracy,precision,gesture recognition,sensitivity,and efficiency rates.The Machine Learning-based Gesture Recognition Framework(ML-GRF)had an accuracy rate of 98.97%,a precision rate of 97.65%,a gesture recognition rate of 98.04%,a sensitivity rate of 96.99%,and an efficiency rate of 95.12%. 展开更多
关键词 Machine learning gesture recognition framework accuracy rate precision rate gesture recognition rate sensitivity rate efficiency rate
下载PDF
STRAIN RATE SENSITIVITY OF ULTRAFINE-GRAINED Cu WITH NANOSIZED TWINS 被引量:1
18
作者 L.X. Liu X.H. Chen L. Lu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第5期313-318,共6页
An ultrafine-grained Cu sample with a high density of growth twins was synthesized by means of pulsed electrodeposition technique. The strain rate sensitivity of the Cu sample was measured by strain rate cycling tests... An ultrafine-grained Cu sample with a high density of growth twins was synthesized by means of pulsed electrodeposition technique. The strain rate sensitivity of the Cu sample was measured by strain rate cycling tests under tension. The effects of grain size as well as twin density on the strength and strain rate sensitivity were discussed. 展开更多
关键词 COPPER nanosized twin strain rate sensitivity deformation mechanism
下载PDF
Sensitivity analysis of influencing parameters in cavern stability 被引量:9
19
作者 Abolfazl Abdollahipour Reza Rahmannejad 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期707-710,共4页
In order to analyze the stability of the underground rock structures,knowing the sensitivity of geomechanical parameters is important.To investigate the priority of these geomechanical properties in the stability of c... In order to analyze the stability of the underground rock structures,knowing the sensitivity of geomechanical parameters is important.To investigate the priority of these geomechanical properties in the stability of cavern,a sensitivity analysis has been performed on a single cavern in various rock mass qualities according to RMR using Phase 2.The stability of cavern has been studied by investigating the side wall deformation.Results showed that most sensitive properties are coefficient of lateral stress and modulus of deformation.Also parameters of Hoek-Brown criterion and r c have no sensitivity when cavern is in a perfect elastic state.But in an elasto-plastic state,parameters of Hoek-Brown criterion and r c affect the deformability;such effect becomes more remarkable with increasing plastic area.Other parameters have different sensitivities concerning rock mass quality(RMR).Results have been used to propose the best set of parameters for study on prediction of sidewall displacement. 展开更多
关键词 Sensitivity analysis Cavern stability Numerical methods RMR rating system
下载PDF
Superplastic behavior of a fine-grained Mg-Gd-Y-Ag alloy processed by equal channel angular pressing 被引量:1
20
作者 A.Rezaei R.Mahmudi R.E.Logé 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3815-3828,共14页
An extruded Mg-6Gd-3Y-1.5Ag(wt%) alloy was processed by 6 passes of equal channel angular pressing(ECAP) at 553 K using route Bc to refine the microstructure. Electron back-scattered diffraction(EBSD) analysis showed ... An extruded Mg-6Gd-3Y-1.5Ag(wt%) alloy was processed by 6 passes of equal channel angular pressing(ECAP) at 553 K using route Bc to refine the microstructure. Electron back-scattered diffraction(EBSD) analysis showed a fully recrystallized microstructure for the extruded alloy with a mean grain size of 8.6 μm. The microstructure of the ECAP-processed alloy was uniformly refined through dynamic recrystallization(DRX). This microstructure contained fine grains with an average size of 1.3 μm, a high fraction of high angle grain boundaries(HAGBs), and nano-sized Mg_(5)Gd-type particles at the boundaries of the DRXed grains, detected by transmission electron microscopy(TEM). High-temperature shear punch testing(SPT) was used to evaluate the superplastic behavior of both the extruded and ECAP-processed alloys by measuring the strain rate sensitivity(SRS) index(m-value). While the highest m-value for the extruded alloy was measured to be 0.24 at 673 K, the ECAP-processed alloy exhibited much higher m-values of 0.41 and 0.52 at 598 and 623 K, respectively,delineating the occurrence of superplastic flow. Based on the calculated average activation energy of 118 kJ mol^(-1) and m-values close to 0.5, the deformation mechanism for superplastic flow at the temperatures of 598 and 623 K for the ECAP-processed alloys was recognized to be grain boundary sliding(GBS) assisted by grain boundary diffusion. 展开更多
关键词 Mg-Gd-Y alloys Equal channel angular pressing SUPERPLASTICITY Strain rate sensitivity Grain boundary sliding
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部