A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes...A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.展开更多
Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to ...Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation.展开更多
Food dye Brilliant Blue was introduced as the tracer in a dye-tracing experiment to obtain dye profile patterns of sandy loam soil, aeolian sandy soil, percolating paddy soil and permeable paddy soil. The dyed soil pr...Food dye Brilliant Blue was introduced as the tracer in a dye-tracing experiment to obtain dye profile patterns of sandy loam soil, aeolian sandy soil, percolating paddy soil and permeable paddy soil. The dyed soil profiles were then photographed and the photos were scanned into a computer. Edited with certain software, only the dyed areas were left on the profile photos, which indicted the preferential flow paths for water and solute transport. Fractal dimensions of the dye patterns were calculated according to Arnold's function. Soil particle size distribution was analyzed by pipette method. The regression analysis showed that there was significant relationship between soil clay content and fractal dimension D of the dye pattern of soil profile. Based on the experiment results, the possibility of introducing fractal dimension to estimation of soil sensitivity to preferential flow is discussed.展开更多
The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable incl...The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable inclined magnetic field,thermal radiation,and an exponential heat source.Experimentally estimated values of the thermal conductivity and viscosity of the hybrid nanomaterial are utilized in the calculation.The governing intricate nonlinear problem is treated numerically,and a parametric analysis is carried out by using graphical visualizations.A finite difference-based numerical scheme is utilized in conjunction with the 4-stage Lobatto IIIa formula to solve the nonlinear governing problem.The interactive effects of the pertinent parameters on the heat transfer rate are presented by plotting the response surfaces and the contours obtained from the RSM.The mono and hybrid nanomaterial flow fields are compared.The hybrid nanomaterial possesses enhanced thermal fields for nanoparticle volume fractions less than 2%.The irregular heat source and the thermal radiation enhance the temperature profiles.The high level of the thermal radiation and the low levels of the exponential heat source and the angle of inclination(of the magnetic field)lead to the optimized heat transfer rate(Nux=7.46275).展开更多
This letter reports traffic flow sensitivity to visco-elasticity, with the traffic flow modeling briefly described at first and then used to do traffic flow simulations whose results can reflect the properties of spat...This letter reports traffic flow sensitivity to visco-elasticity, with the traffic flow modeling briefly described at first and then used to do traffic flow simulations whose results can reflect the properties of spatial-temporal evolution of ring traffic flow. It reveals that visco-elasticity plays crucial role in formation of traffic flow patterns, implying that self-organization of traffic flow is crucial in determining traffic flow status.展开更多
Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assess...Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assessing the consequences of these landslides is challenging and necessitates robust numerical methods to comprehensively investigate their failure mechanisms.While studies have extensively explored upward progressive landslides in sensitive clays,understanding downward progressive cases remains limited.In this study,we utilised the nodal integration-based particle finite element method(NPFEM)with a nonlinear strain-softening model to analyse downward progressive landslides in sensitive clay on elongated slopes,induced by surcharge loads near the crest.We focused on elucidating the underlying failure mechanisms and evaluating the effects of different soil parameters and strainsoftening characteristics.The simulation results revealed the typical pattern for downward landslides,which typically start with a localised failure in proximity to the surcharge loads,followed by a combination of different types of failure mechanisms,including single flow slides,translational progressive landslides,progressive flow slides,and spread failures.Additionally,inclined shear bands occur within spread failures,often adopting distinctive ploughing patterns characterised by triangular shapes.The sensitive clay thickness at the base,the clay strength gradient,the sensitivity,and the softening rate significantly influence the failure mechanisms and the extent of diffused displacement.Remarkably,some of these effects mirror those observed in upward progressive landslides,underscoring the interconnectedness of these phenomena.This study contributes valuable insights into the complex dynamics of sensitive clay landslides,shedding light on the intricate interplay of factors governing their behaviour and progression.展开更多
Theoretical equations for computing sensitivity coefficients of wellbore pressures to estimate the reservoir parameters in low-permeability reservoirs conditioning to non-Darcy flow data at low velocity were obtained....Theoretical equations for computing sensitivity coefficients of wellbore pressures to estimate the reservoir parameters in low-permeability reservoirs conditioning to non-Darcy flow data at low velocity were obtained. It is shown by a lot of numerical calculations that the wellbore pressures are much more sensitive to permeability very near the well than to permeability a few gridblocks away from the well. When an initial pressure gradient existent sensitivity coefficients in the region are closer to the active well than to the observation well. Sensitivity coefficients of observation well at the line between the active well and the observation well are influenced greatly by the initial pressure gradient.展开更多
This paper used the Chinese listing Corporation financial data (2003-2013) to study the relationship between the supply chain finance development, SME financing constraints and cash flow. The study found that the sm...This paper used the Chinese listing Corporation financial data (2003-2013) to study the relationship between the supply chain finance development, SME financing constraints and cash flow. The study found that the small and medium-sized enterprise has obvious cash flow sensitivity, explaining it is subjected to the larger financing constraints. The development of supply chain finance can alleviate the financing constraints of SMEs, but for large enterprises it is unable to play a corresponding role.展开更多
The pressure-sensitive effect on the pore structure of sandstone was investigated using X-ray computed micro-tomography and QEMSCAN quantitative mineral analysis. In a physical simulation study, we extracted the pore ...The pressure-sensitive effect on the pore structure of sandstone was investigated using X-ray computed micro-tomography and QEMSCAN quantitative mineral analysis. In a physical simulation study, we extracted the pore network model from digital cores at different confining pressures and evaluated the effect of pressure sensitivity on the multiphase displacement process. In both the pore network model and QEMSCAN scanning, the pore structure was observed to be damaged under a high confining pressure. Due to their different scales, the pores and throats exhibited inhomogeneous changes; further, the throats exhibited a significant variation compared to that exhibited by the pores. Meanwhile, the heterogeneity of the pore structure under the two aforementioned activities was aggravated by the elastic-plastic deformation of the pore structure.The pressure-sensitive effect increased the proportion of mineral particles, such as quartz(the main component of the core skeleton), and reduced the proportion of clay minerals. The clay minerals were originally attached to the pore walls or interspersed in the pores; however, as the pressure increased, the clay minerals accumulated in the pores resulting in blockage of the pores. While simulating the multiphase displacement process, increasing the confining pressure was observed to severely restrict the flowability of oil and water. This study promises to improve the efficiency of reservoir development in terms of oil and gas exploitation.展开更多
The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequentl...The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.展开更多
A theoretical sensitivity analysis of total lost timeand saturated flow rate is conducted based on the methodproposed in the Highway Capacity Manual (HCM). Inaddition, the accuracy of the timing calculation algorith...A theoretical sensitivity analysis of total lost timeand saturated flow rate is conducted based on the methodproposed in the Highway Capacity Manual (HCM). Inaddition, the accuracy of the timing calculation algorithmsuggested in the HCM is verified using field data from threeintersections. It is demonstrated that there is a positivecorrelation between the estimation error rates of the signalcycle length and the phase lost time. Also, the estimated valueof saturated flow rate must meet the specific requirementsunder different saturated conditions to guarantee the accuracyof the signal cycle length. However, through analysis of fielddata collected on the discharge headway in three intersections,it is also found that, if the 4th vehicle is set as the initial spotfor the stable discharge headway, as is recommended in theHCM, the error of the phase lost time will be over 40% whenthe line length is over 10 vehicles. Moreover, the calculationerror for signal cycle length is not guaranteed to fall within the15% range when the length of line is over 15 vehicles. It issuggested that, to improve the applicability of the HCMmethod, a more accurate description of the distributedregularity of the discharge headway is necessary whencalibrating key parameters.展开更多
Malaria continues to be a devastating disease. In a previous study, we formulated a chemically defined culture medium that is able to sustain the complete intraerythrocytic growth of Plasmodium falciparum. We tested t...Malaria continues to be a devastating disease. In a previous study, we formulated a chemically defined culture medium that is able to sustain the complete intraerythrocytic growth of Plasmodium falciparum. We tested the feasibility of using the medium (CDRPMI) as well as human serum-free media enriched with commercially available human-serum substitutes (GFSRPMI and ALBRPMI) to assess the drug sensitivity of P. falciparum, using chloroquine diphosphate (CQ) and dihydroartemisinin (DHART) as conventional antimalarial drugs. Growth inhibition was measured by four different methods: flow cytometry with SYBR Green I (FCM), microscopy (Giemsa method), enzymatic estimation of parasite lactate dehydrogenase (pLDH), and histidine-rich protein 2 (HRPII) determination. In drug sensitivity tests on asynchronous parasites cultured for 96 h in the presence of drugs, the dose-response curves were similar and differences in the 50% growth inhibition concentrations for the drugs, which were estimated by the four methods, were not statistically significant for the three culture media. The effect of the drugs on the growth of synchronous parasites at the ring stage was also assessed in micro-volume tests by three different methods of FCM: tracking fluorescent erythrocytes, schizont test, and merozoite test. Dose-response curves for the drugs were similar, and differences in the 50% growth inhibition concentrations were not statistically significant for CDRPMI and GFSRPMI. Thus CDRPMI as well as GFSRPMI and ALBRPMI can be similarly useful media for drug sensitivity testing of P. falciparum. The FCM, pLDH and HRPII estimations were fast and reliable detection methods, with FCM allowing schizont and merozoite tests to be performed with shorter periods of culture.展开更多
In this work,a steady,incompressible Williamson fluid model is investigated in a porous wavy channel.This situation arises in the reabsorption of useful substances from the glomerular filtrate in the kidney.After 80%r...In this work,a steady,incompressible Williamson fluid model is investigated in a porous wavy channel.This situation arises in the reabsorption of useful substances from the glomerular filtrate in the kidney.After 80%reabsorption,urine is left,which behaves like a thinning fluid.The laws of conservation of mass and momentum are used to model the physical problem.The analytical solution of the problem in terms of stream function is obtained by a regular perturbation expansion method.The asymptotic integration method for small wave amplitudes and the RK-Fehlberg method for pressure distribution has been used inside the channel.It is demonstrated that the forward flow becomes fast in the narrow region(at x=0.75),which dominates the upward flow inside the channel.To study the impact of model parameters on outputs,we applied normalized local sensitivity analysis and noticed that the most influential parameter for the longitudinal velocity profile is the dimensionless wave amplitude.The reabsorption parameter is sensitive for transverse velocity in the narrow region,and the Weissenberg number has a strong effect on the pressure inside the channel.Further,the least sensitive parameters for the velocity components and pressure have been identified.展开更多
When evaluating Nuclear Waste DGR Safety, it is necessary to confirm its safety in a long run and above all its safety towards the biosphere which is more precisely that the biosphere will not be in any hazard caused ...When evaluating Nuclear Waste DGR Safety, it is necessary to confirm its safety in a long run and above all its safety towards the biosphere which is more precisely that the biosphere will not be in any hazard caused by radioactive substances, With the aid of geologists, a model of a hypothetical area was elaborated and described with the use of geological and hydrogeological parameters. The volume of isotopes released out of the massif at the borderline of the near/far field from the DGR was determined. The paper results showed that ground water flow and transport of substances within the area were first to be determined. The Flow123D SW was used for the determination. The resulting outcome represents a determination of transported substances concentration depending on time. The disadvantage of the model is the fact that all the input parameters were set deterministically. The problem is solved by using the sensitivity analysis (changing the input parameters) or using the Monte Carlo Method. The major results are: calculations of the radionuclide concentrations in the elements depending on time and determination of parameters that have the biggest impact on the sensitivity of the whole model.展开更多
Insulin resistance(IR)is the common pathophysiological basis of many metabolic diseases.IR is characterized by decreased glucose uptake in skeletal muscle and adipose tissue,especially in skeletal muscle.Skeletal musc...Insulin resistance(IR)is the common pathophysiological basis of many metabolic diseases.IR is characterized by decreased glucose uptake in skeletal muscle and adipose tissue,especially in skeletal muscle.Skeletal muscle is the main target tissue of glucose uptake under insulin stimulation.Glucose uptake by skeletal muscle is complex,and it is controlled by many pathways.The PI3K/AKt/GSK-1 signaling pathway is not only the main pathway for insulin signal transduction but also an important mechanism for regulating blood glucose.From the binding of insulin to its receptors on the surface of target cells to the transportation of glucose from extracellular fluid to skeletal muscle,a series of signal transduction processes is completed,any of which potentially affects the physiological effects of insulin and leads to IR.Resistance exercise(RT)can reduce skeletal muscle IR and effectively improve blood glucose control and glycosylated hemoglobin level in patients with type 2 diabetes mellitus(T2DM).However,the exact mechanism by which RT improves skeletal muscle IR remains unclear.Therefore,this paper discusses the above problems by tracking the progress of the literature to deepen the correlation between RT and skeletal muscle insulin sensitivity and provide further evidence for the application of exercise therapy in IR.In conclusion,RT mainly improves insulin sensitivity of skeletal muscle by increasing muscle mass,microvascular blood flow,and glucose transporter-4 expression in skeletal muscle,as well as by reducing lipid accumulation and inflammation in skeletal muscle.Thus,it is potentially useful in the prevention and treatment of T2DM.展开更多
This paper presents a new analytical solution to investigate the mechanism of transient confinedunconfined flow in a confined aquifer induced by pumping with a large rate during mine drainage.The study focuses on unde...This paper presents a new analytical solution to investigate the mechanism of transient confinedunconfined flow in a confined aquifer induced by pumping with a large rate during mine drainage.The study focuses on understanding the impact of non-Darcian effect on flow towards a fully penetrated pumping well.The nonlinear relationship between specific discharge and the hydraulic gradient is described using Izbash's equation.A novel approximate method is developed to linearize the mathematical model,and the solution is derived using the Boltzmann transform.The proposed solution is validated by comparing it with previous works.The findings indicate that increased non-Darcian index,quasi-hydraulic conductivity,and specific storage have negatively affect the development of the unconfined region and aquifer drawdown,as greater turbulence flow accelerates recharge to the pumping well.Drawdown is found to be sensitive to the non-Darcian index,quasi-hydraulic conductivity,while it is unaffected by specific yield and specific storage.The conclusions provide valuable insights for mine drainage and the application of geological and hydrological conditions.展开更多
基金This study was supported by the National Natural Science Foundation of China(U22B2075,52274056,51974356).
文摘A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.
文摘Estimating the oil-water temperatures in flowlines is challenging especially in deepwater and ultra-deepwater offshore applications where issues of flow assurance and dramatic heat transfer are likely to occur due to the temperature difference between the fluids and the surroundings. Heat transfer analysis is very important for the prediction and prevention of deposits in oil and water flowlines, which could impede the flow and give rise to huge financial losses. Therefore, a 3D mathematical model of oil-water Newtonian flow under non-isothermal conditions is established to explore the complex mechanisms of the two-phase oil-water transportation and heat transfer in different flowline inclinations. In this work, a non-isothermal two-phase flow model is first modified and then implemented in the InterFoam solver by introducing the energy equation using OpenFOAM® code. The Low Reynolds Number (LRN) k-ε turbulence model is utilized to resolve the turbulence phenomena within the oil and water mixtures. The flow patterns and the local heat transfer coefficients (HTC) for two-phase oil-water flow at different flowlines inclinations (0°, +4°, +7°) are validated by the experimental literature results and the relative errors are also compared. Global sensitivity analysis is then conducted to determine the effect of the different parameters on the performance of the produced two-phase hydrocarbon systems for effective subsea fluid transportation. Thereafter, HTC and flow patterns for oil-water flows at downward inclinations of 4°, and 7° can be predicted by the models. The velocity distribution, pressure gradient, liquid holdup, and temperature variation at the flowline cross-sections are simulated and analyzed in detail. Consequently, the numerical model can be generally applied to compute the global properties of the fluid and other operating parameters that are beneficial in the management of two-phase oil-water transportation.
基金Project supported by the National Key Basic Research Support FOundation(NKBRSF) of China(No.G19990ll708) and the Guangxi Uni,rsitv Science funds China(No.1701).
文摘Food dye Brilliant Blue was introduced as the tracer in a dye-tracing experiment to obtain dye profile patterns of sandy loam soil, aeolian sandy soil, percolating paddy soil and permeable paddy soil. The dyed soil profiles were then photographed and the photos were scanned into a computer. Edited with certain software, only the dyed areas were left on the profile photos, which indicted the preferential flow paths for water and solute transport. Fractal dimensions of the dye patterns were calculated according to Arnold's function. Soil particle size distribution was analyzed by pipette method. The regression analysis showed that there was significant relationship between soil clay content and fractal dimension D of the dye pattern of soil profile. Based on the experiment results, the possibility of introducing fractal dimension to estimation of soil sensitivity to preferential flow is discussed.
文摘The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable inclined magnetic field,thermal radiation,and an exponential heat source.Experimentally estimated values of the thermal conductivity and viscosity of the hybrid nanomaterial are utilized in the calculation.The governing intricate nonlinear problem is treated numerically,and a parametric analysis is carried out by using graphical visualizations.A finite difference-based numerical scheme is utilized in conjunction with the 4-stage Lobatto IIIa formula to solve the nonlinear governing problem.The interactive effects of the pertinent parameters on the heat transfer rate are presented by plotting the response surfaces and the contours obtained from the RSM.The mono and hybrid nanomaterial flow fields are compared.The hybrid nanomaterial possesses enhanced thermal fields for nanoparticle volume fractions less than 2%.The irregular heat source and the thermal radiation enhance the temperature profiles.The high level of the thermal radiation and the low levels of the exponential heat source and the angle of inclination(of the magnetic field)lead to the optimized heat transfer rate(Nux=7.46275).
基金support of Russian Foundation for Basic Research (RFBR 13-01-12056)National Natural Science Foundation of China (10972212)
文摘This letter reports traffic flow sensitivity to visco-elasticity, with the traffic flow modeling briefly described at first and then used to do traffic flow simulations whose results can reflect the properties of spatial-temporal evolution of ring traffic flow. It reveals that visco-elasticity plays crucial role in formation of traffic flow patterns, implying that self-organization of traffic flow is crucial in determining traffic flow status.
基金support provided by the UK Engineering and Physical Sciences Research Council(EP/V012169/1).
文摘Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assessing the consequences of these landslides is challenging and necessitates robust numerical methods to comprehensively investigate their failure mechanisms.While studies have extensively explored upward progressive landslides in sensitive clays,understanding downward progressive cases remains limited.In this study,we utilised the nodal integration-based particle finite element method(NPFEM)with a nonlinear strain-softening model to analyse downward progressive landslides in sensitive clay on elongated slopes,induced by surcharge loads near the crest.We focused on elucidating the underlying failure mechanisms and evaluating the effects of different soil parameters and strainsoftening characteristics.The simulation results revealed the typical pattern for downward landslides,which typically start with a localised failure in proximity to the surcharge loads,followed by a combination of different types of failure mechanisms,including single flow slides,translational progressive landslides,progressive flow slides,and spread failures.Additionally,inclined shear bands occur within spread failures,often adopting distinctive ploughing patterns characterised by triangular shapes.The sensitive clay thickness at the base,the clay strength gradient,the sensitivity,and the softening rate significantly influence the failure mechanisms and the extent of diffused displacement.Remarkably,some of these effects mirror those observed in upward progressive landslides,underscoring the interconnectedness of these phenomena.This study contributes valuable insights into the complex dynamics of sensitive clay landslides,shedding light on the intricate interplay of factors governing their behaviour and progression.
文摘Theoretical equations for computing sensitivity coefficients of wellbore pressures to estimate the reservoir parameters in low-permeability reservoirs conditioning to non-Darcy flow data at low velocity were obtained. It is shown by a lot of numerical calculations that the wellbore pressures are much more sensitive to permeability very near the well than to permeability a few gridblocks away from the well. When an initial pressure gradient existent sensitivity coefficients in the region are closer to the active well than to the observation well. Sensitivity coefficients of observation well at the line between the active well and the observation well are influenced greatly by the initial pressure gradient.
文摘This paper used the Chinese listing Corporation financial data (2003-2013) to study the relationship between the supply chain finance development, SME financing constraints and cash flow. The study found that the small and medium-sized enterprise has obvious cash flow sensitivity, explaining it is subjected to the larger financing constraints. The development of supply chain finance can alleviate the financing constraints of SMEs, but for large enterprises it is unable to play a corresponding role.
文摘The pressure-sensitive effect on the pore structure of sandstone was investigated using X-ray computed micro-tomography and QEMSCAN quantitative mineral analysis. In a physical simulation study, we extracted the pore network model from digital cores at different confining pressures and evaluated the effect of pressure sensitivity on the multiphase displacement process. In both the pore network model and QEMSCAN scanning, the pore structure was observed to be damaged under a high confining pressure. Due to their different scales, the pores and throats exhibited inhomogeneous changes; further, the throats exhibited a significant variation compared to that exhibited by the pores. Meanwhile, the heterogeneity of the pore structure under the two aforementioned activities was aggravated by the elastic-plastic deformation of the pore structure.The pressure-sensitive effect increased the proportion of mineral particles, such as quartz(the main component of the core skeleton), and reduced the proportion of clay minerals. The clay minerals were originally attached to the pore walls or interspersed in the pores; however, as the pressure increased, the clay minerals accumulated in the pores resulting in blockage of the pores. While simulating the multiphase displacement process, increasing the confining pressure was observed to severely restrict the flowability of oil and water. This study promises to improve the efficiency of reservoir development in terms of oil and gas exploitation.
基金The project supported by the Innovative Project of CAS (KJCX-SW-L08)the National Basic Research Program of China(973)
文摘The similarity criterion for water flooding reservoir flows is concerned with in the present paper. When finding out all the dimensionless variables governing this kind of flow, their physical meanings are subsequently elucidated. Then, a numerical approach of sensitivity analysis is adopted to quantify their corresponding dominance degree among the similarity parameters. In this way, we may finally identify major scaling law in different parameter range and demonstrate the respective effects of viscosity, permeability and injection rate.
基金Jiangsu Science and Technology Project(No.BY2016076-05)the Scientific Research Foundation of Graduate School of Southeast University,the Fundamental Research Funds for the Central Universities,the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX15_0152)
文摘A theoretical sensitivity analysis of total lost timeand saturated flow rate is conducted based on the methodproposed in the Highway Capacity Manual (HCM). Inaddition, the accuracy of the timing calculation algorithmsuggested in the HCM is verified using field data from threeintersections. It is demonstrated that there is a positivecorrelation between the estimation error rates of the signalcycle length and the phase lost time. Also, the estimated valueof saturated flow rate must meet the specific requirementsunder different saturated conditions to guarantee the accuracyof the signal cycle length. However, through analysis of fielddata collected on the discharge headway in three intersections,it is also found that, if the 4th vehicle is set as the initial spotfor the stable discharge headway, as is recommended in theHCM, the error of the phase lost time will be over 40% whenthe line length is over 10 vehicles. Moreover, the calculationerror for signal cycle length is not guaranteed to fall within the15% range when the length of line is over 15 vehicles. It issuggested that, to improve the applicability of the HCMmethod, a more accurate description of the distributedregularity of the discharge headway is necessary whencalibrating key parameters.
文摘Malaria continues to be a devastating disease. In a previous study, we formulated a chemically defined culture medium that is able to sustain the complete intraerythrocytic growth of Plasmodium falciparum. We tested the feasibility of using the medium (CDRPMI) as well as human serum-free media enriched with commercially available human-serum substitutes (GFSRPMI and ALBRPMI) to assess the drug sensitivity of P. falciparum, using chloroquine diphosphate (CQ) and dihydroartemisinin (DHART) as conventional antimalarial drugs. Growth inhibition was measured by four different methods: flow cytometry with SYBR Green I (FCM), microscopy (Giemsa method), enzymatic estimation of parasite lactate dehydrogenase (pLDH), and histidine-rich protein 2 (HRPII) determination. In drug sensitivity tests on asynchronous parasites cultured for 96 h in the presence of drugs, the dose-response curves were similar and differences in the 50% growth inhibition concentrations for the drugs, which were estimated by the four methods, were not statistically significant for the three culture media. The effect of the drugs on the growth of synchronous parasites at the ring stage was also assessed in micro-volume tests by three different methods of FCM: tracking fluorescent erythrocytes, schizont test, and merozoite test. Dose-response curves for the drugs were similar, and differences in the 50% growth inhibition concentrations were not statistically significant for CDRPMI and GFSRPMI. Thus CDRPMI as well as GFSRPMI and ALBRPMI can be similarly useful media for drug sensitivity testing of P. falciparum. The FCM, pLDH and HRPII estimations were fast and reliable detection methods, with FCM allowing schizont and merozoite tests to be performed with shorter periods of culture.
文摘In this work,a steady,incompressible Williamson fluid model is investigated in a porous wavy channel.This situation arises in the reabsorption of useful substances from the glomerular filtrate in the kidney.After 80%reabsorption,urine is left,which behaves like a thinning fluid.The laws of conservation of mass and momentum are used to model the physical problem.The analytical solution of the problem in terms of stream function is obtained by a regular perturbation expansion method.The asymptotic integration method for small wave amplitudes and the RK-Fehlberg method for pressure distribution has been used inside the channel.It is demonstrated that the forward flow becomes fast in the narrow region(at x=0.75),which dominates the upward flow inside the channel.To study the impact of model parameters on outputs,we applied normalized local sensitivity analysis and noticed that the most influential parameter for the longitudinal velocity profile is the dimensionless wave amplitude.The reabsorption parameter is sensitive for transverse velocity in the narrow region,and the Weissenberg number has a strong effect on the pressure inside the channel.Further,the least sensitive parameters for the velocity components and pressure have been identified.
文摘When evaluating Nuclear Waste DGR Safety, it is necessary to confirm its safety in a long run and above all its safety towards the biosphere which is more precisely that the biosphere will not be in any hazard caused by radioactive substances, With the aid of geologists, a model of a hypothetical area was elaborated and described with the use of geological and hydrogeological parameters. The volume of isotopes released out of the massif at the borderline of the near/far field from the DGR was determined. The paper results showed that ground water flow and transport of substances within the area were first to be determined. The Flow123D SW was used for the determination. The resulting outcome represents a determination of transported substances concentration depending on time. The disadvantage of the model is the fact that all the input parameters were set deterministically. The problem is solved by using the sensitivity analysis (changing the input parameters) or using the Monte Carlo Method. The major results are: calculations of the radionuclide concentrations in the elements depending on time and determination of parameters that have the biggest impact on the sensitivity of the whole model.
基金National Natural Science Foundation of China Youth Project,No.31702024Shandong Province Higher Educational Science and Technology Plan Project,No.J17KA258.
文摘Insulin resistance(IR)is the common pathophysiological basis of many metabolic diseases.IR is characterized by decreased glucose uptake in skeletal muscle and adipose tissue,especially in skeletal muscle.Skeletal muscle is the main target tissue of glucose uptake under insulin stimulation.Glucose uptake by skeletal muscle is complex,and it is controlled by many pathways.The PI3K/AKt/GSK-1 signaling pathway is not only the main pathway for insulin signal transduction but also an important mechanism for regulating blood glucose.From the binding of insulin to its receptors on the surface of target cells to the transportation of glucose from extracellular fluid to skeletal muscle,a series of signal transduction processes is completed,any of which potentially affects the physiological effects of insulin and leads to IR.Resistance exercise(RT)can reduce skeletal muscle IR and effectively improve blood glucose control and glycosylated hemoglobin level in patients with type 2 diabetes mellitus(T2DM).However,the exact mechanism by which RT improves skeletal muscle IR remains unclear.Therefore,this paper discusses the above problems by tracking the progress of the literature to deepen the correlation between RT and skeletal muscle insulin sensitivity and provide further evidence for the application of exercise therapy in IR.In conclusion,RT mainly improves insulin sensitivity of skeletal muscle by increasing muscle mass,microvascular blood flow,and glucose transporter-4 expression in skeletal muscle,as well as by reducing lipid accumulation and inflammation in skeletal muscle.Thus,it is potentially useful in the prevention and treatment of T2DM.
基金supported by the national natural science foundation of China(Grant Numbers 41807197,2017YFC0405900,and 51469002)the natural science foundation of Guangxi(Grant Numbers 2017GXNSFBA198087,2018GXNSFAA 138042,and GuiKeAB17195073)Hebei high level talent funding project(B2018003016).
文摘This paper presents a new analytical solution to investigate the mechanism of transient confinedunconfined flow in a confined aquifer induced by pumping with a large rate during mine drainage.The study focuses on understanding the impact of non-Darcian effect on flow towards a fully penetrated pumping well.The nonlinear relationship between specific discharge and the hydraulic gradient is described using Izbash's equation.A novel approximate method is developed to linearize the mathematical model,and the solution is derived using the Boltzmann transform.The proposed solution is validated by comparing it with previous works.The findings indicate that increased non-Darcian index,quasi-hydraulic conductivity,and specific storage have negatively affect the development of the unconfined region and aquifer drawdown,as greater turbulence flow accelerates recharge to the pumping well.Drawdown is found to be sensitive to the non-Darcian index,quasi-hydraulic conductivity,while it is unaffected by specific yield and specific storage.The conclusions provide valuable insights for mine drainage and the application of geological and hydrological conditions.