The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-con...The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-concentration in the core and with a H2-1oading treatment. In experiments, the FBGs were subjected to y-radiation exposures using a Co6~ source at a dose-rate of 25 Gy/min up to a total dose of 10.5 kGy. The GeO defect in fiber absorbs photons to form a GeE' defect; the interaction with H2 is a probable reason for the y-radiation sensitivity of gratings written in hydrogen loaded fibres, The effect mechanism of radiation on the strain sensitivity coefficient is similar to that of radiation on the temperature sensitivity coefficient. Radiation affects the effective index neff, which results in the change of the thermo-optic coefficient and the strain-optic coefficient. Irradiation can change the strain sensitivity coefficient of FBGs by 1.48%-2.71%, as well as changing the Bragg wavelength shift (BWS) by 22 pm-25 pm under a total dose of 10.5 kGy. Our research demonstrates that the effect of irradiation on the strain sensitivity coefficient of FBG is small and that strain sensing FBGs can work well in the radiation environment.展开更多
The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled l...The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled lateral PNP transistor(GLPNP)that used to extract the interface traps(Nit)and oxide trapped charges(Not).Electrical characteristics in GLPNP transistors induced by ^(60)Co gamma irradiation are measured in situ as a function of total dose,showing that generation of Nit in the oxide is the primary cause of base current variations for the GLPNP.Based on the analysis of the variations of Nit and Not,with switching the temperature,the properties of accelerated protons release and suppressed protons loss play critical roles in determining the increased Nit formation leading to the base current degradation with dose accumulation.Simultaneously the hydrogen cracking mechanisms responsible for additional protons release are related to the neutralization of Not extending enhanced Nit buildup.In this study the switched temperature irradiation has been employed to conservatively estimate the ELDRS of GLPNP,which provides us with a new insight into the test technique for ELDRS.展开更多
The effect of pre-irradiation on radiation sensitivity of fiber Bragg gratings (FBGs) is verified experimentally. FBGs are fabricated in photosensitive optical fibers and single mode fibers with Ce-concentration in ...The effect of pre-irradiation on radiation sensitivity of fiber Bragg gratings (FBGs) is verified experimentally. FBGs are fabricated in photosensitive optical fibers and single mode fibers with Ce-concentration in a range from 3 mol% to 23.37 mol% in the core. In experiments, the FBGs are subjected to twice v-radiation exposures to a Co^60 source at a dose-rate of 0.1 Gy/s up to a total dose of 50 kGy. Pre-irradiation treatment can reduce the temperature sensitivity variation of FBGs by 18.12%-35.91%, as well as Bragg wavelength shift (BWS) by 8%-27.08 %. Our research demonstrates that pre-irradiation treatment is a feasible method to improve the radiation tolerance of FBGs.展开更多
With the increasing application of electric and electronic devices in space and nuclear power stations, the polymeric insulation materials are inevitably exposed to various kinds of environments. Accordingly, it becom...With the increasing application of electric and electronic devices in space and nuclear power stations, the polymeric insulation materials are inevitably exposed to various kinds of environments. Accordingly, it becomes necessary to investigate the effects of the radiation and air pressure on insulation materials. This paper describes the effects of gamma-ray irradiation and reduced pressure on dielectric breakdown of polybutylene naphthalate (PBN) and polybutylene terephthalate (PBT) by applying a DC pulse voltage. Both PBN and PBT were irradiated in air up to 100 kGy and then up to 1 000 kGy with a dose rate of 10 kGy/h by using a60Co gamma-source. The effects of total dose and reduced pressure on the time to dielectric breakdown and discharge quantity were discussed. Obtained results show that, while increasing the total dose, the discharge quantity decreased with PBN, but increased with PBT. With decreasing the air pressure, the discharge quantity increased with PBN, but decreased with PBT. With increasing the total dose, the time to dielectric breakdown increased with PBN, but decreased with PBT. With decreasing the air pressure, the time to dielectric breakdown increased with both PBN and PBT. The experimental results suggest that the chemical structure of polybutylene polymers plays a main role in the result of radiation reaction, which is related to cross-linking and degradation reaction.展开更多
Studied influence of γ-irradiation on stucturation in butadiene nitrile rubber solution and films properties studied also. Structuration in solutions has defined by rheological method with rotation viscometer. Shown ...Studied influence of γ-irradiation on stucturation in butadiene nitrile rubber solution and films properties studied also. Structuration in solutions has defined by rheological method with rotation viscometer. Shown influence of solvent nature (methyl ethyl ketene: toluene) to strength properties and structures of films obtained from this solvents. It has been found that during irradiation of solvent, films and butadiene nitrile rubber solution characteristic viscosity η increased, increasing of Huggins constant (К') observed as well. Changing of spatial mesh of polymers occurs at the cost of changed size of macromolecule balls. Shown, that in the issue of crossing the properties including thermo dynamical features of films and butadiene nitrile rubber solution has changed.展开更多
Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscop...Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscopy was employed to study the activation energy and capture cross-section of helium-induced defects in silicon samples. It was shown that the activation energy levels produced by helium-ion irradiation first increased with increasing annealing temperature, with the maximum value of the activation energy occurring at 873 K, and reduced with further increase of the annealing temperature. The energy levels of defects in the samples annealed at 873 and 1073 K are found to be located near the mid-forbidden energy gap level so that they can act as thermally stable carrier recombination centres.展开更多
Irradiation cross-linking of flame-retardant polyethylene terephthalate( FR-PET) fabric with the presence of trimethylolpropane triacrylate( TMPTA) was studied. Thermal gravimetric( TG) analysis,differential scanning ...Irradiation cross-linking of flame-retardant polyethylene terephthalate( FR-PET) fabric with the presence of trimethylolpropane triacrylate( TMPTA) was studied. Thermal gravimetric( TG) analysis,differential scanning calorimetry( DSC) and scanning electron microscopy( SEM) were used to analyze the effects of irradiation crosslinking on structure and property of FR-PET fabric with TMPTA. The cross-linking was promoted by the introduced sensitizer. The gel content was 5.94% at the lower dose of 90 kGy and it arrived at the highest level of 13.01% with the increased doses. There were no melt drips of FR-PET fabric after irradiation cross-linking while the flame retardance disappeared at the time of combustion. The melting temperature of irradiated fabric decreased and TG analysis showed that the onset temperature of degradation of FR-PET fabric and the amount of nonvolatile residue at 800℃ increased as the irradiation dosage increased,but it changed a little compared with the pure FR-PFT fabric. SEM photographs showed that the residue char of irradiated PET fabrics after vertical test remained the intrinsic crossed structure,and the enlarged graph showed that the char was uniformly distributed and it was tight honeycombs structure.展开更多
In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,an...In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,and comparatively study He-ion irradiation effects on their microstructure and mechanical properties.It ap-pears that the as-deposited HEA/Cu NLs manifest two size h-dependent hardness regimes(i.e.,increased hardness at small h and hardness plateau at large h),while the He-implanted ones exhibit monotonically increased hardness.Contrary to the fashion that smaller h renders less irradiation hardening in bimetal NLs,the Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs manifest the trend that smaller h leads to greater irradiation hard-ening.By contrast,the Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs exhibit the maximum irradiation hardening at a critical h=50 nm.Below this critical size,smaller h results in lower radiation hardening(similar to bimetal NLs),while above this size,smaller h results in greater radiation hardening(similar to Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs).Moreover,these transformable HEA/Cu NLs display inverse h-dependent strain rate sensitivity(SRS m)before and after He-ion irradiation.Nevertheless,compared with as-deposited samples,the irradi-ated Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs display reduced SRS,while the irradiated Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs dis-play enhanced SRS.Such unusual size-dependent irradiation strengthening and inverse h effect on SRS in irradiated samples were rationalized by considering the blocking effects of He bubbles on dislocation nucleation and motion,i.e.,dislocations shearing or bypassing He bubbles.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61007040)
文摘The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-concentration in the core and with a H2-1oading treatment. In experiments, the FBGs were subjected to y-radiation exposures using a Co6~ source at a dose-rate of 25 Gy/min up to a total dose of 10.5 kGy. The GeO defect in fiber absorbs photons to form a GeE' defect; the interaction with H2 is a probable reason for the y-radiation sensitivity of gratings written in hydrogen loaded fibres, The effect mechanism of radiation on the strain sensitivity coefficient is similar to that of radiation on the temperature sensitivity coefficient. Radiation affects the effective index neff, which results in the change of the thermo-optic coefficient and the strain-optic coefficient. Irradiation can change the strain sensitivity coefficient of FBGs by 1.48%-2.71%, as well as changing the Bragg wavelength shift (BWS) by 22 pm-25 pm under a total dose of 10.5 kGy. Our research demonstrates that the effect of irradiation on the strain sensitivity coefficient of FBG is small and that strain sensing FBGs can work well in the radiation environment.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1532261 and 1630141)
文摘The mechanisms occurring when the switched temperature technique is applied,as an accelerated enhanced low dose rate sensitivity(ELDRS)test technique,are investigated in terms of a specially designed gate-controlled lateral PNP transistor(GLPNP)that used to extract the interface traps(Nit)and oxide trapped charges(Not).Electrical characteristics in GLPNP transistors induced by ^(60)Co gamma irradiation are measured in situ as a function of total dose,showing that generation of Nit in the oxide is the primary cause of base current variations for the GLPNP.Based on the analysis of the variations of Nit and Not,with switching the temperature,the properties of accelerated protons release and suppressed protons loss play critical roles in determining the increased Nit formation leading to the base current degradation with dose accumulation.Simultaneously the hydrogen cracking mechanisms responsible for additional protons release are related to the neutralization of Not extending enhanced Nit buildup.In this study the switched temperature irradiation has been employed to conservatively estimate the ELDRS of GLPNP,which provides us with a new insight into the test technique for ELDRS.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61007040)the Fundamental Research Funds for Central Universities
文摘The effect of pre-irradiation on radiation sensitivity of fiber Bragg gratings (FBGs) is verified experimentally. FBGs are fabricated in photosensitive optical fibers and single mode fibers with Ce-concentration in a range from 3 mol% to 23.37 mol% in the core. In experiments, the FBGs are subjected to twice v-radiation exposures to a Co^60 source at a dose-rate of 0.1 Gy/s up to a total dose of 50 kGy. Pre-irradiation treatment can reduce the temperature sensitivity variation of FBGs by 18.12%-35.91%, as well as Bragg wavelength shift (BWS) by 8%-27.08 %. Our research demonstrates that pre-irradiation treatment is a feasible method to improve the radiation tolerance of FBGs.
基金Supported bythe Doctoral Foundation of Education Ministry of China (No.20040056037) .
文摘With the increasing application of electric and electronic devices in space and nuclear power stations, the polymeric insulation materials are inevitably exposed to various kinds of environments. Accordingly, it becomes necessary to investigate the effects of the radiation and air pressure on insulation materials. This paper describes the effects of gamma-ray irradiation and reduced pressure on dielectric breakdown of polybutylene naphthalate (PBN) and polybutylene terephthalate (PBT) by applying a DC pulse voltage. Both PBN and PBT were irradiated in air up to 100 kGy and then up to 1 000 kGy with a dose rate of 10 kGy/h by using a60Co gamma-source. The effects of total dose and reduced pressure on the time to dielectric breakdown and discharge quantity were discussed. Obtained results show that, while increasing the total dose, the discharge quantity decreased with PBN, but increased with PBT. With decreasing the air pressure, the discharge quantity increased with PBN, but decreased with PBT. With increasing the total dose, the time to dielectric breakdown increased with PBN, but decreased with PBT. With decreasing the air pressure, the time to dielectric breakdown increased with both PBN and PBT. The experimental results suggest that the chemical structure of polybutylene polymers plays a main role in the result of radiation reaction, which is related to cross-linking and degradation reaction.
文摘Studied influence of γ-irradiation on stucturation in butadiene nitrile rubber solution and films properties studied also. Structuration in solutions has defined by rheological method with rotation viscometer. Shown influence of solvent nature (methyl ethyl ketene: toluene) to strength properties and structures of films obtained from this solvents. It has been found that during irradiation of solvent, films and butadiene nitrile rubber solution characteristic viscosity η increased, increasing of Huggins constant (К') observed as well. Changing of spatial mesh of polymers occurs at the cost of changed size of macromolecule balls. Shown, that in the issue of crossing the properties including thermo dynamical features of films and butadiene nitrile rubber solution has changed.
基金Project supported by the National Natural Science Foundation of China (Grant No 10575124)
文摘Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscopy was employed to study the activation energy and capture cross-section of helium-induced defects in silicon samples. It was shown that the activation energy levels produced by helium-ion irradiation first increased with increasing annealing temperature, with the maximum value of the activation energy occurring at 873 K, and reduced with further increase of the annealing temperature. The energy levels of defects in the samples annealed at 873 and 1073 K are found to be located near the mid-forbidden energy gap level so that they can act as thermally stable carrier recombination centres.
基金National Natural Science Foundations of China(Nos.51403112,51273097,51306095)Qingdao Postdoctoral Application Research Funded Project,China(No.2015132)Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province,China
文摘Irradiation cross-linking of flame-retardant polyethylene terephthalate( FR-PET) fabric with the presence of trimethylolpropane triacrylate( TMPTA) was studied. Thermal gravimetric( TG) analysis,differential scanning calorimetry( DSC) and scanning electron microscopy( SEM) were used to analyze the effects of irradiation crosslinking on structure and property of FR-PET fabric with TMPTA. The cross-linking was promoted by the introduced sensitizer. The gel content was 5.94% at the lower dose of 90 kGy and it arrived at the highest level of 13.01% with the increased doses. There were no melt drips of FR-PET fabric after irradiation cross-linking while the flame retardance disappeared at the time of combustion. The melting temperature of irradiated fabric decreased and TG analysis showed that the onset temperature of degradation of FR-PET fabric and the amount of nonvolatile residue at 800℃ increased as the irradiation dosage increased,but it changed a little compared with the pure FR-PFT fabric. SEM photographs showed that the residue char of irradiated PET fabrics after vertical test remained the intrinsic crossed structure,and the enlarged graph showed that the char was uniformly distributed and it was tight honeycombs structure.
基金financially supported by the National Natural Science Foundation of China(Nos.U2067219,51722104,51790482,51761135031 and 92163201)the National Key Research and Development Program of China(No.2017YFA0700701)+1 种基金the 111 Project 2.0 of China(No.BP2018008)the Fundamental Research Funds for the Central Universities(No.xtr022019004)。
文摘In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,and comparatively study He-ion irradiation effects on their microstructure and mechanical properties.It ap-pears that the as-deposited HEA/Cu NLs manifest two size h-dependent hardness regimes(i.e.,increased hardness at small h and hardness plateau at large h),while the He-implanted ones exhibit monotonically increased hardness.Contrary to the fashion that smaller h renders less irradiation hardening in bimetal NLs,the Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs manifest the trend that smaller h leads to greater irradiation hard-ening.By contrast,the Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs exhibit the maximum irradiation hardening at a critical h=50 nm.Below this critical size,smaller h results in lower radiation hardening(similar to bimetal NLs),while above this size,smaller h results in greater radiation hardening(similar to Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs).Moreover,these transformable HEA/Cu NLs display inverse h-dependent strain rate sensitivity(SRS m)before and after He-ion irradiation.Nevertheless,compared with as-deposited samples,the irradi-ated Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs display reduced SRS,while the irradiated Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs dis-play enhanced SRS.Such unusual size-dependent irradiation strengthening and inverse h effect on SRS in irradiated samples were rationalized by considering the blocking effects of He bubbles on dislocation nucleation and motion,i.e.,dislocations shearing or bypassing He bubbles.