This paper mainly investigates the connectivity of the unreliable sensor grid network. We consider an unreliable sensor grid network with mn nodes placed in a certain planar area A, and we assume that each node has in...This paper mainly investigates the connectivity of the unreliable sensor grid network. We consider an unreliable sensor grid network with mn nodes placed in a certain planar area A, and we assume that each node has independent failure probability p and has the same transmission range R. This paper presents a new method for calculating the connectivity probability of the network, which uses thorough mathematical methods to derive the relationship among the network connectivity probability, the probability that a node is "failed" (not active), the numbers of node, and the node's transmission range in unreliable sensor networks. Our approach is more useful and efficient for given problem and conditions. Such as the numerical calculating results indicate that, for a 100×100 size sensot network, if node failure probability is bounded 0.5%, even if the transmission range is small (such as R = 10), we can still maintain very high connectivity probability (reach 95.8%). On the other hand, the simulation results show that building high connectivity probability is entirely possible on unreliable sensor grid networks.展开更多
Researches related to wireless sensor networks primarily concentrate on Routing, Location Services, Data Aggregation and Energy Calculation Methods. Due to the heterogeneity of sensor networks using the web architectu...Researches related to wireless sensor networks primarily concentrate on Routing, Location Services, Data Aggregation and Energy Calculation Methods. Due to the heterogeneity of sensor networks using the web architecture, cross layer mechanism can be implemented for integrating multiple resources. Framework for Sensor Web using the cross layer scheduling mechanisms in the grid environment is proposed in this paper. The resource discovery and the energy efficient data aggregation schemes are used to improvise the effective utilization capability in the Sensor Web. To collaborate with multiple resources environment, the grid computing concept is integrated with sensor web. Resource discovery and the scheduling schemes in the grid architecture are organized using the medium access control protocol. The various cross layer metrics proposed are Memory Awareness, Task Awareness and Energy Awareness. Based on these metrics, the parameters-Node Waiting Status, Used CPU Status, Average System Utilization, Average Utilization per Cluster, Cluster Usage per Hour and Node Energy Status are determined for the integrated heterogeneous WSN with sensor web in Grid Environment. From the comparative analysis, it is shown that sensor grid architecture with middleware framework has better resource awareness than the normal sensor network architectures.展开更多
The model of energy cost in a wireless sensor network (WSN)environment is built, and the energy awareness and the wireless interference mainly due to different path loss models are studied. A special case of a clust...The model of energy cost in a wireless sensor network (WSN)environment is built, and the energy awareness and the wireless interference mainly due to different path loss models are studied. A special case of a clustering scheme, a twodimensional grid clustering mechanism, is adopted. Clusterheads are rotated evenly among all sensor nodes in an efficient and decentralized manner, based on the residual energy in the battery and the random backoff time. In addition to transmitting and receiving packets within the sensors' electrical and amplification circuits, extra energy is needed in the retransmission of packets due to packet collisions caused by severe interference. By analysis and mathematical derivation, which are based on planar geometry, it is shown that the total energy consumed in the network is directly related to the gridstructure in the proposed grid based clustering mechanism. The transmission range is determined by cluster size, and the path loss exponent is determined by nodal separation. The summation of overall interference is caused by all the sensors that are transmitting concurrently. By analysis and simulation, an optimal grid structure with the corresponding grid size is presented, which balances between maximizing energy conservation and minimizing overall interference in wireless sensor networks.展开更多
Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime,...Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer.展开更多
In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)i...In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)is used to generate orthogonal signals with the same frequency to estimate the grid voltage.In addition,in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy,a power correction link is designed to correct the power reference value.The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform.Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage.The effectiveness of the proposed method is verified by comparing the simulation results.展开更多
In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless sensor network. The sensor field is divided into square grids, where sensor nodes in each grid for...In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless sensor network. The sensor field is divided into square grids, where sensor nodes in each grid form a cluster with a cluster head. Each cluster head maintains the confidence levels of its member nodes based on their readings and reflects them in decision-making. Two thresholds are used to distinguish between false alarms due to malicious nodes and events. In addition, the center of an event region is estimated, if necessary, to enhance the event and malicious node detection accuracy. Experimental results show that the scheme can achieve high malicious node detection accuracy without sacrificing normal sensor nodes.展开更多
This work proposes a geographic routing protocol for UWSNs based on the construction of a 3D virtual grid structure, called Void-Avoidance Grid-based Multipath Position-based Routing (VA-GMPR). It consists of two main...This work proposes a geographic routing protocol for UWSNs based on the construction of a 3D virtual grid structure, called Void-Avoidance Grid-based Multipath Position-based Routing (VA-GMPR). It consists of two main components, the multipath routing scheme and the grid-based void avoidance (GVA) mechanism for handling routing holes. The multipath routing scheme adopts node-disjoint routes from the source to the sink in order to enhance network reliability and load balancing. While the GVA mechanism handles the problem of holes in 3D virtual grid structure based on three techniques: Hole bypass, path diversion, and path backtracking. The performance evaluation of the VA-GMPR protocol was compared to a recently proposed grid-based routing protocol for UWSNs, called Energy-efficient Multipath Geographic Grid-based Routing (EMGGR). The results showed that the VA-GMPR protocol outperformed the EMGGR protocol in terms of packet delivery ratio, and end-to end-delay. However, the results also showed that the VA-GMPR protocol exhibited higher energy consumption compared to EMGGR.展开更多
This work proposes an efficient disjoint multipath geographic routing algorithm for dense wireless sensor networks (WSN), called Multipath Grid-based Enabled Geographic Routing (MGEGR). The proposed algorithm relies o...This work proposes an efficient disjoint multipath geographic routing algorithm for dense wireless sensor networks (WSN), called Multipath Grid-based Enabled Geographic Routing (MGEGR). The proposed algorithm relies on the construction of a 2-D logical grid in the geographical region of deployment. The objective of the proposed scheme is to determine optimal or near-optimal (within a defined constant) multiple disjoint paths (multipath) from a source node to the sink, in order to enhance the reliability of the network. The determined multiple disjoint paths would be used by the source node in a round-robin way to balance the traffic across the disjoint paths, and to avoid discovered paths with cell holes. The proposed scheme limits the use of broadcasting to the process of gateway election within each cell, and the process of maintaining the table of neighbors of each gateway. Our simulation results show the effectiveness and scalability of our routing scheme with increased network size compared to on-demand routing protocols.展开更多
针对无线传感器网络占空比MAC协议在链路或节点失效环境下易导致严重的能量浪费问题,提出了一种基于Grid Quorum的异步低占空比M AC协议-AGQ-M AC(Asynchronous Grid Quorum M AC).AGQ-M AC采用Grid Quorum组分配信道,通过动态调配Quoru...针对无线传感器网络占空比MAC协议在链路或节点失效环境下易导致严重的能量浪费问题,提出了一种基于Grid Quorum的异步低占空比M AC协议-AGQ-M AC(Asynchronous Grid Quorum M AC).AGQ-M AC采用Grid Quorum组分配信道,通过动态调配Quorum比率得到了节点的最优占空比,并在邻节点发现过程中采用双前导序文抽样来监测信道状态,以减少节点唤醒时间从而达到能量高效.仿真实验结果表明,与其他占空比MAC协议相比,AGQ-MAC延长了网络生存时间,降低了网络能耗,提高了邻发现数据传输率,同时保持较低的平均邻发现延迟.展开更多
The article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text quite like the one published in other journal. The problem is ...The article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text quite like the one published in other journal. The problem is under investigation. This paper published in Vol.4 No.1, 2012, has been removed from this site temporally.展开更多
The state-of-the-art query techniques in power grid monitoring systems focus on querying history data, which typically introduces an unwanted lag when the systems try to discover emergency situations. The monitoring d...The state-of-the-art query techniques in power grid monitoring systems focus on querying history data, which typically introduces an unwanted lag when the systems try to discover emergency situations. The monitoring data of large-scale smart grids are massive, dynamic and highly dimensional, so global query, the method widely adopted in continuous queries in Wireless Sensor Networks(WSN), is rendered not suitable for its high energy consumption. The situation is even worse with increasing application complexity. We propose an energy-efficient query technique for large-scale smart grids based on variable regions. This method can query an arbitrary region based on variable physical windows, and optimizes data retrieve paths by a key nodes selection strategy. According to the characteristics of sensing data, we introduce an efficient filter into the each query subtree to keep non-skyline data from being retrieved. Experimental results show that our method can efficiently return the overview situation of any query region. Compared to TAG and ESA, the average query efficiency of our approach is improved by 79% and 46%, respectively; the total energy consumption of regional query is decreased by 82% and 50%, respectively.展开更多
This paper presents an in-depth evaluation of Wireless Sensor Networks. Wireless Sensor Networks have been highlighted as the major component that enables the development of modern infrastructures, such as the Smart G...This paper presents an in-depth evaluation of Wireless Sensor Networks. Wireless Sensor Networks have been highlighted as the major component that enables the development of modern infrastructures, such as the Smart Grid. As part of an on-going edification process on the subject matter, this paper brings to fore the many important functions and components of Wireless Sensor Networks, including application areas, functional architectures, physical topological design, communication protocols, routing schemes and Wireless Sensor Network hardware capabilities.展开更多
基金Supported by the National Natural Science Foundation of China(90412012) the Natural Science Foundation of Guangdong Province andthe Post-doctoral Science Foundation of China
文摘This paper mainly investigates the connectivity of the unreliable sensor grid network. We consider an unreliable sensor grid network with mn nodes placed in a certain planar area A, and we assume that each node has independent failure probability p and has the same transmission range R. This paper presents a new method for calculating the connectivity probability of the network, which uses thorough mathematical methods to derive the relationship among the network connectivity probability, the probability that a node is "failed" (not active), the numbers of node, and the node's transmission range in unreliable sensor networks. Our approach is more useful and efficient for given problem and conditions. Such as the numerical calculating results indicate that, for a 100×100 size sensot network, if node failure probability is bounded 0.5%, even if the transmission range is small (such as R = 10), we can still maintain very high connectivity probability (reach 95.8%). On the other hand, the simulation results show that building high connectivity probability is entirely possible on unreliable sensor grid networks.
文摘Researches related to wireless sensor networks primarily concentrate on Routing, Location Services, Data Aggregation and Energy Calculation Methods. Due to the heterogeneity of sensor networks using the web architecture, cross layer mechanism can be implemented for integrating multiple resources. Framework for Sensor Web using the cross layer scheduling mechanisms in the grid environment is proposed in this paper. The resource discovery and the energy efficient data aggregation schemes are used to improvise the effective utilization capability in the Sensor Web. To collaborate with multiple resources environment, the grid computing concept is integrated with sensor web. Resource discovery and the scheduling schemes in the grid architecture are organized using the medium access control protocol. The various cross layer metrics proposed are Memory Awareness, Task Awareness and Energy Awareness. Based on these metrics, the parameters-Node Waiting Status, Used CPU Status, Average System Utilization, Average Utilization per Cluster, Cluster Usage per Hour and Node Energy Status are determined for the integrated heterogeneous WSN with sensor web in Grid Environment. From the comparative analysis, it is shown that sensor grid architecture with middleware framework has better resource awareness than the normal sensor network architectures.
文摘The model of energy cost in a wireless sensor network (WSN)environment is built, and the energy awareness and the wireless interference mainly due to different path loss models are studied. A special case of a clustering scheme, a twodimensional grid clustering mechanism, is adopted. Clusterheads are rotated evenly among all sensor nodes in an efficient and decentralized manner, based on the residual energy in the battery and the random backoff time. In addition to transmitting and receiving packets within the sensors' electrical and amplification circuits, extra energy is needed in the retransmission of packets due to packet collisions caused by severe interference. By analysis and mathematical derivation, which are based on planar geometry, it is shown that the total energy consumed in the network is directly related to the gridstructure in the proposed grid based clustering mechanism. The transmission range is determined by cluster size, and the path loss exponent is determined by nodal separation. The summation of overall interference is caused by all the sensors that are transmitting concurrently. By analysis and simulation, an optimal grid structure with the corresponding grid size is presented, which balances between maximizing energy conservation and minimizing overall interference in wireless sensor networks.
基金supported by the NSC under Grant No.NSC-101-2221-E-239-032 and NSC-102-2221-E-239-020
文摘Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer.
基金National Natural Science Foundation of China(Nos.51767013,52067013)。
文摘In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)is used to generate orthogonal signals with the same frequency to estimate the grid voltage.In addition,in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy,a power correction link is designed to correct the power reference value.The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform.Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage.The effectiveness of the proposed method is verified by comparing the simulation results.
文摘In this paper, we present a malicious node detection scheme using confidence-level evaluation in a grid-based wireless sensor network. The sensor field is divided into square grids, where sensor nodes in each grid form a cluster with a cluster head. Each cluster head maintains the confidence levels of its member nodes based on their readings and reflects them in decision-making. Two thresholds are used to distinguish between false alarms due to malicious nodes and events. In addition, the center of an event region is estimated, if necessary, to enhance the event and malicious node detection accuracy. Experimental results show that the scheme can achieve high malicious node detection accuracy without sacrificing normal sensor nodes.
基金This work Science Foundation of China is supported by the National (No.60273085), the State High-tech Research and Development Project (No.2001AA111081) and the ChinaGrid Project of China (No.CG2003-GA002).
文摘This work proposes a geographic routing protocol for UWSNs based on the construction of a 3D virtual grid structure, called Void-Avoidance Grid-based Multipath Position-based Routing (VA-GMPR). It consists of two main components, the multipath routing scheme and the grid-based void avoidance (GVA) mechanism for handling routing holes. The multipath routing scheme adopts node-disjoint routes from the source to the sink in order to enhance network reliability and load balancing. While the GVA mechanism handles the problem of holes in 3D virtual grid structure based on three techniques: Hole bypass, path diversion, and path backtracking. The performance evaluation of the VA-GMPR protocol was compared to a recently proposed grid-based routing protocol for UWSNs, called Energy-efficient Multipath Geographic Grid-based Routing (EMGGR). The results showed that the VA-GMPR protocol outperformed the EMGGR protocol in terms of packet delivery ratio, and end-to end-delay. However, the results also showed that the VA-GMPR protocol exhibited higher energy consumption compared to EMGGR.
文摘This work proposes an efficient disjoint multipath geographic routing algorithm for dense wireless sensor networks (WSN), called Multipath Grid-based Enabled Geographic Routing (MGEGR). The proposed algorithm relies on the construction of a 2-D logical grid in the geographical region of deployment. The objective of the proposed scheme is to determine optimal or near-optimal (within a defined constant) multiple disjoint paths (multipath) from a source node to the sink, in order to enhance the reliability of the network. The determined multiple disjoint paths would be used by the source node in a round-robin way to balance the traffic across the disjoint paths, and to avoid discovered paths with cell holes. The proposed scheme limits the use of broadcasting to the process of gateway election within each cell, and the process of maintaining the table of neighbors of each gateway. Our simulation results show the effectiveness and scalability of our routing scheme with increased network size compared to on-demand routing protocols.
文摘针对无线传感器网络占空比MAC协议在链路或节点失效环境下易导致严重的能量浪费问题,提出了一种基于Grid Quorum的异步低占空比M AC协议-AGQ-M AC(Asynchronous Grid Quorum M AC).AGQ-M AC采用Grid Quorum组分配信道,通过动态调配Quorum比率得到了节点的最优占空比,并在邻节点发现过程中采用双前导序文抽样来监测信道状态,以减少节点唤醒时间从而达到能量高效.仿真实验结果表明,与其他占空比MAC协议相比,AGQ-MAC延长了网络生存时间,降低了网络能耗,提高了邻发现数据传输率,同时保持较低的平均邻发现延迟.
文摘The article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text quite like the one published in other journal. The problem is under investigation. This paper published in Vol.4 No.1, 2012, has been removed from this site temporally.
基金supported by the National Natural Science Foundation of China (NO. 61472072, 61528202, 61501105, 61472169)the Foundation of Science Public Welfare of Liaoning Province in China (NO. 2015003003)
文摘The state-of-the-art query techniques in power grid monitoring systems focus on querying history data, which typically introduces an unwanted lag when the systems try to discover emergency situations. The monitoring data of large-scale smart grids are massive, dynamic and highly dimensional, so global query, the method widely adopted in continuous queries in Wireless Sensor Networks(WSN), is rendered not suitable for its high energy consumption. The situation is even worse with increasing application complexity. We propose an energy-efficient query technique for large-scale smart grids based on variable regions. This method can query an arbitrary region based on variable physical windows, and optimizes data retrieve paths by a key nodes selection strategy. According to the characteristics of sensing data, we introduce an efficient filter into the each query subtree to keep non-skyline data from being retrieved. Experimental results show that our method can efficiently return the overview situation of any query region. Compared to TAG and ESA, the average query efficiency of our approach is improved by 79% and 46%, respectively; the total energy consumption of regional query is decreased by 82% and 50%, respectively.
文摘This paper presents an in-depth evaluation of Wireless Sensor Networks. Wireless Sensor Networks have been highlighted as the major component that enables the development of modern infrastructures, such as the Smart Grid. As part of an on-going edification process on the subject matter, this paper brings to fore the many important functions and components of Wireless Sensor Networks, including application areas, functional architectures, physical topological design, communication protocols, routing schemes and Wireless Sensor Network hardware capabilities.