A new scheduling algorithm called deferrable scheduling with time slice exchange (DS-EXC) was proposed to maintain the temporal validity of real-time data. In DS-EXC, the time slice exchange method was designed to fur...A new scheduling algorithm called deferrable scheduling with time slice exchange (DS-EXC) was proposed to maintain the temporal validity of real-time data. In DS-EXC, the time slice exchange method was designed to further defer the release time of transaction instances derived by the deferrable scheduling algorithm (DS-FP). In this way, more CPU time would be left for lower priority transactions and other transactions. In order to minimize the scheduling overhead, an off-line scheme was designed. In particular, the schedule for a transaction set is generated off-line until a repeating pattern is found, and then the pattern is used to construct the schedule on-line. The performance of DS-EXC was evaluated by sets of experiments. The results show that DS-EXC outperforms DS-FP in terms of increasing schedulable ratio. It also provides better performance under mixed workloads.展开更多
Maintaining temporal consistency of real-time data is important for cyber-physical systems.Most of the previous studies focus on uniprocessor systems.In this paper,the problem of temporal consistency maintenance on mu...Maintaining temporal consistency of real-time data is important for cyber-physical systems.Most of the previous studies focus on uniprocessor systems.In this paper,the problem of temporal consistency maintenance on multiprocessor platforms with instance skipping was formulated based on the(m,k)-constrained model.A partitioned scheduling method SC-AD was proposed to solve the problem.SC-AD uses a derived sufficient schedulability condition to calculate the initial value of m for each sensor transaction.It then partitions the transactions among the processors in a balanced way.To further reduce the average relative invalid time of real-time data,SC-AD judiciously increases the values of m for transactions assigned to each processor.Experiment results show that SC-AD outperforms the baseline methods in terms of the average relative invalid time and the average valid ratio under different system workloads.展开更多
基金Project(60873030) supported by the National Natural Science Foundation of China
文摘A new scheduling algorithm called deferrable scheduling with time slice exchange (DS-EXC) was proposed to maintain the temporal validity of real-time data. In DS-EXC, the time slice exchange method was designed to further defer the release time of transaction instances derived by the deferrable scheduling algorithm (DS-FP). In this way, more CPU time would be left for lower priority transactions and other transactions. In order to minimize the scheduling overhead, an off-line scheme was designed. In particular, the schedule for a transaction set is generated off-line until a repeating pattern is found, and then the pattern is used to construct the schedule on-line. The performance of DS-EXC was evaluated by sets of experiments. The results show that DS-EXC outperforms DS-FP in terms of increasing schedulable ratio. It also provides better performance under mixed workloads.
基金Project(2020JJ4032)supported by the Hunan Provincial Natural Science Foundation of China。
文摘Maintaining temporal consistency of real-time data is important for cyber-physical systems.Most of the previous studies focus on uniprocessor systems.In this paper,the problem of temporal consistency maintenance on multiprocessor platforms with instance skipping was formulated based on the(m,k)-constrained model.A partitioned scheduling method SC-AD was proposed to solve the problem.SC-AD uses a derived sufficient schedulability condition to calculate the initial value of m for each sensor transaction.It then partitions the transactions among the processors in a balanced way.To further reduce the average relative invalid time of real-time data,SC-AD judiciously increases the values of m for transactions assigned to each processor.Experiment results show that SC-AD outperforms the baseline methods in terms of the average relative invalid time and the average valid ratio under different system workloads.