期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
An Abstractive Summarization Technique with Variable Length Keywords as per Document Diversity 被引量:1
1
作者 Muhammad Yahya Saeed Muhammad Awais +4 位作者 Muhammad Younas Muhammad Arif Shah Atif Khan M.Irfan Uddin Marwan Mahmoud 《Computers, Materials & Continua》 SCIE EI 2021年第3期2409-2423,共15页
Text Summarization is an essential area in text mining,which has procedures for text extraction.In natural language processing,text summarization maps the documents to a representative set of descriptive words.Therefo... Text Summarization is an essential area in text mining,which has procedures for text extraction.In natural language processing,text summarization maps the documents to a representative set of descriptive words.Therefore,the objective of text extraction is to attain reduced expressive contents from the text documents.Text summarization has two main areas such as abstractive,and extractive summarization.Extractive text summarization has further two approaches,in which the first approach applies the sentence score algorithm,and the second approach follows the word embedding principles.All such text extractions have limitations in providing the basic theme of the underlying documents.In this paper,we have employed text summarization by TF-IDF with PageRank keywords,sentence score algorithm,and Word2Vec word embedding.The study compared these forms of the text summarizations with the actual text,by calculating cosine similarities.Furthermore,TF-IDF based PageRank keywords are extracted from the other two extractive summarizations.An intersection over these three types of TD-IDF keywords to generate the more representative set of keywords for each text document is performed.This technique generates variable-length keywords as per document diversity instead of selecting fixedlength keywords for each document.This form of abstractive summarization improves metadata similarity to the original text compared to all other forms of summarized text.It also solves the issue of deciding the number of representative keywords for a specific text document.To evaluate the technique,the study used a sample of more than eighteen hundred text documents.The abstractive summarization follows the principles of deep learning to create uniform similarity of extracted words with actual text and all other forms of text summarization.The proposed technique provides a stable measure of similarity as compared to existing forms of text summarization. 展开更多
关键词 METADATA page rank sentence score word2vec cosine similarity This
下载PDF
BHLM:Bayesian theory-based hybrid learning model for multi-document summarization
2
作者 S.Suneetha A.Venugopal Reddy 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2018年第2期229-250,共22页
In order to understand and organize the document in an efficient way,the multidocument summarization becomes the prominent technique in the Internet world.As the information available is in a large amount,it is necess... In order to understand and organize the document in an efficient way,the multidocument summarization becomes the prominent technique in the Internet world.As the information available is in a large amount,it is necessary to summarize the document for obtaining the condensed information.To perform the multi-document summarization,a new Bayesian theory-based Hybrid Learning Model(BHLM)is proposed in this paper.Initially,the input documents are preprocessed,where the stop words are removed from the document.Then,the feature of the sentence is extracted to determine the sentence score for summarizing the document.The extracted feature is then fed into the hybrid learning model for learning.Subsequently,learning feature,training error and correlation coefficient are integrated with the Bayesian model to develop BHLM.Also,the proposed method is used to assign the class label assisted by the mean,variance and probability measures.Finally,based on the class label,the sentences are sorted out to generate the final summary of the multi-document.The experimental results are validated in MATLAB,and the performance is analyzed using the metrics,precision,recall,F-measure and rouge-1.The proposed model attains 99.6%precision and 75%rouge-1 measure,which shows that the model can provide the final summary efficiently. 展开更多
关键词 MULTI-DOCUMENT text feature sentence score hybrid learning model Bayesian theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部