Purpose: The purpose of this study is to develop an automated frequently asked question(FAQ) answering system for farmers. This paper presents an approach for calculating the similarity between Chinese sentences based...Purpose: The purpose of this study is to develop an automated frequently asked question(FAQ) answering system for farmers. This paper presents an approach for calculating the similarity between Chinese sentences based on hybrid strategies.Design/methodology/approach: We analyzed the factors influencing the successful matching between a user's question and a question-answer(QA) pair in the FAQ database. Our approach is based on a combination of multiple factors. Experiments were conducted to test the performance of our method.Findings: Experiments show that this proposed method has higher accuracy. Compared with similarity calculation based on TF-IDF,the sentence surface forms and the semantic relations,the proposed method based on hybrid strategies has a superior performance in precision,recall and F-measure value.Research limitations: The FAQ answering system is only capable of meeting users' demand for text retrieval at present. In the future,the system needs to be improved to meet users' demand for retrieving images and videos.Practical implications: This FAQ answering system will help farmers utilize agricultural information resources more efficiently.Originality/value: We design the algorithms for calculating similarity of Chinese sentences based on hybrid strategies,which integrate the question surface similarity,the question semantic similarity and the question-answer similarity based on latent semantic analysis(LSA) to find answers to a user's question.展开更多
Racial discrimination remains a prevalent issue in the contemporary U.S.despite efforts to promote equality.Many young African American and Hispanic males are easy target for law enforcement agents.Minorities experien...Racial discrimination remains a prevalent issue in the contemporary U.S.despite efforts to promote equality.Many young African American and Hispanic males are easy target for law enforcement agents.Minorities experience a higher and more unfair form of racial discrimination,racial profiling,police brutality,unfair sentencing,and mass incarceration for offences which are the same or less than those committed by White males.The rate of incarceration in the United States is five to eight times higher than most developed countries,and Black males constitute the largest percentage of inmates in the U.S.prison system.Once arrested,Black Americans are more likely to remain in prison longer,and await trial for minor offenses at a higher rate than Whites.Black and Latino males sentenced in state and federal courts face significantly greater odds of incarceration than White offenders for the same or even higher crimes.Vagins and McCurdy in a 2006 ACLU on“cracks in the system”reported that“There is no rational medical or penological reason for the 100:1 disparity between crack and powder cocaine and instead it causes an unjustified racial disparity in our penal system”(p.7).There is a racial disparity in the proportion of Black males in prison serving sentences of life without the possibility of parole(LWOP).In addition,The United States Criminal Justice System needs to be carefully examined as a top priority agenda needing immediate call of action that needs reform to guarantee the constitutional rights accorded to every American“with liberty and justice for all”.展开更多
Correction to:Nano-Micro Lett.(2023)15:223 https://doi.org/10.1007/s40820-023-01189-0 In this article the author’s name“Hao-Chung Kuo”was incorrectly written as“Hao-Chung Guo”.And in the last sentence of the firs...Correction to:Nano-Micro Lett.(2023)15:223 https://doi.org/10.1007/s40820-023-01189-0 In this article the author’s name“Hao-Chung Kuo”was incorrectly written as“Hao-Chung Guo”.And in the last sentence of the first paragraph of Introduction,the text‘(20-20)’should have read‘(20-21)’.The original article has been corrected.展开更多
Video description generates natural language sentences that describe the subject,verb,and objects of the targeted Video.The video description has been used to help visually impaired people to understand the content.It...Video description generates natural language sentences that describe the subject,verb,and objects of the targeted Video.The video description has been used to help visually impaired people to understand the content.It is also playing an essential role in devolving human-robot interaction.The dense video description is more difficult when compared with simple Video captioning because of the object’s interactions and event overlapping.Deep learning is changing the shape of computer vision(CV)technologies and natural language processing(NLP).There are hundreds of deep learning models,datasets,and evaluations that can improve the gaps in current research.This article filled this gap by evaluating some state-of-the-art approaches,especially focusing on deep learning and machine learning for video caption in a dense environment.In this article,some classic techniques concerning the existing machine learning were reviewed.And provides deep learning models,a detail of benchmark datasets with their respective domains.This paper reviews various evaluation metrics,including Bilingual EvaluationUnderstudy(BLEU),Metric for Evaluation of Translation with Explicit Ordering(METEOR),WordMover’s Distance(WMD),and Recall-Oriented Understudy for Gisting Evaluation(ROUGE)with their pros and cons.Finally,this article listed some future directions and proposed work for context enhancement using key scene extraction with object detection in a particular frame.Especially,how to improve the context of video description by analyzing key frames detection through morphological image analysis.Additionally,the paper discusses a novel approach involving sentence reconstruction and context improvement through key frame object detection,which incorporates the fusion of large languagemodels for refining results.The ultimate results arise fromenhancing the generated text of the proposedmodel by improving the predicted text and isolating objects using various keyframes.These keyframes identify dense events occurring in the video sequence.展开更多
Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requir...Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.展开更多
In order to convey complete meanings,there is a phenomenon in Chinese of using multiple running sentences.Xu Jingning(2023,p.66)states,“In communication,a complete expression of meaning often requires more than one c...In order to convey complete meanings,there is a phenomenon in Chinese of using multiple running sentences.Xu Jingning(2023,p.66)states,“In communication,a complete expression of meaning often requires more than one clause,which is common in human languages.”Domestic research on running sentences includes discussions on defining the concept and structural features of running sentences,sentence properties,sentence pattern classifications and their criteria,as well as issues related to translating running sentences into English.This article primarily focuses on scholarly research into the English translation of running sentences in China,highlighting recent achievements and identifying existing issues in the study of running sentence translation.However,by reviewing literature on the translation of running sentences,it is found that current research in the academic community on non-core running sentences is limited.Therefore,this paper proposes relevant strategies to address this issue.展开更多
In order to recognize people's annoyance emotions in the working environment and evaluate emotional well- being, emotional speech in a work environment is induced to obtain adequate samples of emotional speech, and a...In order to recognize people's annoyance emotions in the working environment and evaluate emotional well- being, emotional speech in a work environment is induced to obtain adequate samples of emotional speech, and a Mandarin database with two thousands samples is built. In searching for annoyance-type emotion features, the prosodic feature and the voice quality feature parameters of the emotional statements are extracted first. Then an improved back propagation (BP) neural network based on the shuffled frog leaping algorithm (SFLA) is proposed to recognize the emotion. The recognition capability of the BP, radical basis function (RBF) and the SFLA neural networks are compared experimentally. The results show that the recognition ratio of the SFLA neural network is 4. 7% better than that of the BP neural network and 4. 3% better than that of the RBF neural network. The experimental results demonstrate that the random initial data trained by the SFLA can optimize the connection weights and thresholds of the neural network, speed up the convergence and improve the recognition rate.展开更多
Dealing with issues such as too simple image features and word noise inference in product image sentence anmotation, a product image sentence annotation model focusing on image feature learning and key words summariza...Dealing with issues such as too simple image features and word noise inference in product image sentence anmotation, a product image sentence annotation model focusing on image feature learning and key words summarization is described. Three kernel descriptors such as gradient, shape, and color are extracted, respectively. Feature late-fusion is executed in turn by the multiple kernel learning model to obtain more discriminant image features. Absolute rank and relative rank of the tag-rank model are used to boost the key words' weights. A new word integration algorithm named word sequence blocks building (WSBB) is designed to create N-gram word sequences. Sentences are generated according to the N-gram word sequences and predefined templates. Experimental results show that both the BLEU-1 scores and BLEU-2 scores of the sentences are superior to those of the state-of-art baselines.展开更多
Periodic sentence is often identified as sentence with main clause as end-weight. In fact, this definition is so confusing that it causes the same confusion in practice. This paper aims at rethinking periodic sentence...Periodic sentence is often identified as sentence with main clause as end-weight. In fact, this definition is so confusing that it causes the same confusion in practice. This paper aims at rethinking periodic sentence and advocates the adoption of noble styles with periodic sentence as its chief representative.展开更多
The purpose of punctuaion is to make the reading of the sentences easier and to make the meaning of the writing clear for readers. But how to use it correctly and what is the real function of it are still problems for...The purpose of punctuaion is to make the reading of the sentences easier and to make the meaning of the writing clear for readers. But how to use it correctly and what is the real function of it are still problems for writers. The following article is that how the punctuation style shows up in liters- ature and how the tiny mark-comma is used in writing.展开更多
Ⅰ.Decide whether the following statementsare True or False:1.If a speaker wants to give the same amountof importance to the joined constituents ofthe sentence,he uses the way of subordina-
Unit 9 The BrainLanguage Points:1.complex:adj./n.复杂的,难懂的;综合体,体系。例:(1)What the professor said was too complexfor me to understand.教授说的太复杂了,我不理解。(2)Shenyang is an industrial complex.沈阳是一个...Unit 9 The BrainLanguage Points:1.complex:adj./n.复杂的,难懂的;综合体,体系。例:(1)What the professor said was too complexfor me to understand.教授说的太复杂了,我不理解。(2)Shenyang is an industrial complex.沈阳是一个工业中心。2.complicated:adj.复杂的。例:展开更多
基金jointly supported by the National Social Science Foundation of China(Grant Nos.:08ATQ003 and 10&ZD134)
文摘Purpose: The purpose of this study is to develop an automated frequently asked question(FAQ) answering system for farmers. This paper presents an approach for calculating the similarity between Chinese sentences based on hybrid strategies.Design/methodology/approach: We analyzed the factors influencing the successful matching between a user's question and a question-answer(QA) pair in the FAQ database. Our approach is based on a combination of multiple factors. Experiments were conducted to test the performance of our method.Findings: Experiments show that this proposed method has higher accuracy. Compared with similarity calculation based on TF-IDF,the sentence surface forms and the semantic relations,the proposed method based on hybrid strategies has a superior performance in precision,recall and F-measure value.Research limitations: The FAQ answering system is only capable of meeting users' demand for text retrieval at present. In the future,the system needs to be improved to meet users' demand for retrieving images and videos.Practical implications: This FAQ answering system will help farmers utilize agricultural information resources more efficiently.Originality/value: We design the algorithms for calculating similarity of Chinese sentences based on hybrid strategies,which integrate the question surface similarity,the question semantic similarity and the question-answer similarity based on latent semantic analysis(LSA) to find answers to a user's question.
文摘Racial discrimination remains a prevalent issue in the contemporary U.S.despite efforts to promote equality.Many young African American and Hispanic males are easy target for law enforcement agents.Minorities experience a higher and more unfair form of racial discrimination,racial profiling,police brutality,unfair sentencing,and mass incarceration for offences which are the same or less than those committed by White males.The rate of incarceration in the United States is five to eight times higher than most developed countries,and Black males constitute the largest percentage of inmates in the U.S.prison system.Once arrested,Black Americans are more likely to remain in prison longer,and await trial for minor offenses at a higher rate than Whites.Black and Latino males sentenced in state and federal courts face significantly greater odds of incarceration than White offenders for the same or even higher crimes.Vagins and McCurdy in a 2006 ACLU on“cracks in the system”reported that“There is no rational medical or penological reason for the 100:1 disparity between crack and powder cocaine and instead it causes an unjustified racial disparity in our penal system”(p.7).There is a racial disparity in the proportion of Black males in prison serving sentences of life without the possibility of parole(LWOP).In addition,The United States Criminal Justice System needs to be carefully examined as a top priority agenda needing immediate call of action that needs reform to guarantee the constitutional rights accorded to every American“with liberty and justice for all”.
文摘Correction to:Nano-Micro Lett.(2023)15:223 https://doi.org/10.1007/s40820-023-01189-0 In this article the author’s name“Hao-Chung Kuo”was incorrectly written as“Hao-Chung Guo”.And in the last sentence of the first paragraph of Introduction,the text‘(20-20)’should have read‘(20-21)’.The original article has been corrected.
文摘Video description generates natural language sentences that describe the subject,verb,and objects of the targeted Video.The video description has been used to help visually impaired people to understand the content.It is also playing an essential role in devolving human-robot interaction.The dense video description is more difficult when compared with simple Video captioning because of the object’s interactions and event overlapping.Deep learning is changing the shape of computer vision(CV)technologies and natural language processing(NLP).There are hundreds of deep learning models,datasets,and evaluations that can improve the gaps in current research.This article filled this gap by evaluating some state-of-the-art approaches,especially focusing on deep learning and machine learning for video caption in a dense environment.In this article,some classic techniques concerning the existing machine learning were reviewed.And provides deep learning models,a detail of benchmark datasets with their respective domains.This paper reviews various evaluation metrics,including Bilingual EvaluationUnderstudy(BLEU),Metric for Evaluation of Translation with Explicit Ordering(METEOR),WordMover’s Distance(WMD),and Recall-Oriented Understudy for Gisting Evaluation(ROUGE)with their pros and cons.Finally,this article listed some future directions and proposed work for context enhancement using key scene extraction with object detection in a particular frame.Especially,how to improve the context of video description by analyzing key frames detection through morphological image analysis.Additionally,the paper discusses a novel approach involving sentence reconstruction and context improvement through key frame object detection,which incorporates the fusion of large languagemodels for refining results.The ultimate results arise fromenhancing the generated text of the proposedmodel by improving the predicted text and isolating objects using various keyframes.These keyframes identify dense events occurring in the video sequence.
文摘Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.
文摘In order to convey complete meanings,there is a phenomenon in Chinese of using multiple running sentences.Xu Jingning(2023,p.66)states,“In communication,a complete expression of meaning often requires more than one clause,which is common in human languages.”Domestic research on running sentences includes discussions on defining the concept and structural features of running sentences,sentence properties,sentence pattern classifications and their criteria,as well as issues related to translating running sentences into English.This article primarily focuses on scholarly research into the English translation of running sentences in China,highlighting recent achievements and identifying existing issues in the study of running sentence translation.However,by reviewing literature on the translation of running sentences,it is found that current research in the academic community on non-core running sentences is limited.Therefore,this paper proposes relevant strategies to address this issue.
基金The National Natural Science Foundation of China(No.61375028,61301219)China Postdoctoral Science Foundation(No.2012M520973)the Scientific Research Funds of Nanjing Institute of Technology(No.ZKJ201202)
文摘In order to recognize people's annoyance emotions in the working environment and evaluate emotional well- being, emotional speech in a work environment is induced to obtain adequate samples of emotional speech, and a Mandarin database with two thousands samples is built. In searching for annoyance-type emotion features, the prosodic feature and the voice quality feature parameters of the emotional statements are extracted first. Then an improved back propagation (BP) neural network based on the shuffled frog leaping algorithm (SFLA) is proposed to recognize the emotion. The recognition capability of the BP, radical basis function (RBF) and the SFLA neural networks are compared experimentally. The results show that the recognition ratio of the SFLA neural network is 4. 7% better than that of the BP neural network and 4. 3% better than that of the RBF neural network. The experimental results demonstrate that the random initial data trained by the SFLA can optimize the connection weights and thresholds of the neural network, speed up the convergence and improve the recognition rate.
基金The National Natural Science Foundation of China(No.61133012)the Humanity and Social Science Foundation of the Ministry of Education(No.12YJCZH274)+1 种基金the Humanity and Social Science Foundation of Jiangxi Province(No.XW1502,TQ1503)the Science and Technology Project of Jiangxi Science and Technology Department(No.20121BBG70050,20142BBG70011)
文摘Dealing with issues such as too simple image features and word noise inference in product image sentence anmotation, a product image sentence annotation model focusing on image feature learning and key words summarization is described. Three kernel descriptors such as gradient, shape, and color are extracted, respectively. Feature late-fusion is executed in turn by the multiple kernel learning model to obtain more discriminant image features. Absolute rank and relative rank of the tag-rank model are used to boost the key words' weights. A new word integration algorithm named word sequence blocks building (WSBB) is designed to create N-gram word sequences. Sentences are generated according to the N-gram word sequences and predefined templates. Experimental results show that both the BLEU-1 scores and BLEU-2 scores of the sentences are superior to those of the state-of-art baselines.
文摘Periodic sentence is often identified as sentence with main clause as end-weight. In fact, this definition is so confusing that it causes the same confusion in practice. This paper aims at rethinking periodic sentence and advocates the adoption of noble styles with periodic sentence as its chief representative.
文摘The purpose of punctuaion is to make the reading of the sentences easier and to make the meaning of the writing clear for readers. But how to use it correctly and what is the real function of it are still problems for writers. The following article is that how the punctuation style shows up in liters- ature and how the tiny mark-comma is used in writing.
文摘Ⅰ.Decide whether the following statementsare True or False:1.If a speaker wants to give the same amountof importance to the joined constituents ofthe sentence,he uses the way of subordina-
文摘Unit 9 The BrainLanguage Points:1.complex:adj./n.复杂的,难懂的;综合体,体系。例:(1)What the professor said was too complexfor me to understand.教授说的太复杂了,我不理解。(2)Shenyang is an industrial complex.沈阳是一个工业中心。2.complicated:adj.复杂的。例: