期刊文献+
共找到147篇文章
< 1 2 8 >
每页显示 20 50 100
MELex: The Construction of Malay-English Sentiment Lexicon
1
作者 Nurul Husna Mahadzir Mohd Faizal Omar +3 位作者 Mohd Nasrun Mohd Nawi Anas ASalameh Kasmaruddin Che Hussin Abid Sohail 《Computers, Materials & Continua》 SCIE EI 2022年第4期1789-1805,共17页
Currently,the sentiment analysis research in the Malaysian context lacks in terms of the availability of the sentiment lexicon.Thus,this issue is addressed in this paper in order to enhance the accuracy of sentiment a... Currently,the sentiment analysis research in the Malaysian context lacks in terms of the availability of the sentiment lexicon.Thus,this issue is addressed in this paper in order to enhance the accuracy of sentiment analysis.In this study,a new lexicon for sentiment analysis is constructed.A detailed review of existing approaches has been conducted,and a new bilingual sentiment lexicon known as MELex(Malay-English Lexicon)has been generated.Constructing MELex involves three activities:seed words selection,polarity assignment,and synonym expansions.Our approach differs from previous works in that MELex can analyze text for the two most widely used languages in Malaysia,Malay,and English,with the accuracy achieved,is 90%.It is evaluated based on the experimentation and case study approaches where the affordable housing projects in Malaysia are selected as case projects.This finding has given an implication on the ability of MELex to analyze public sentiments in the Malaysian context.The novel aspects of this paper are two-fold.Firstly,it introduces the new technique in assigning the polarity score,and second,it improves the performance over the classification of mixed language content. 展开更多
关键词 Machine learning data sciences artificial intelligence opinion mining sentiment analysis sentiment lexicon lexicon-based bilingual lexicon
下载PDF
Sentiment Lexicon Construction Based on Improved Left-Right Entropy Algorithm
2
作者 YU Shoujian WANG Baoying LU Ting 《Journal of Donghua University(English Edition)》 CAS 2022年第1期65-71,共7页
A novel method of constructing sentiment lexicon of new words(SLNW)is proposed to realize effective Weibo sentiment analysis by integrating existing lexicons of sentiments,lexicons of degree,negation and network.Based... A novel method of constructing sentiment lexicon of new words(SLNW)is proposed to realize effective Weibo sentiment analysis by integrating existing lexicons of sentiments,lexicons of degree,negation and network.Based on left-right entropy and mutual information(MI)neologism discovery algorithms,this new algorithm divides N-gram to obtain strings dynamically instead of relying on fixed sliding window when using Trie as data structure.The sentiment-oriented point mutual information(SO-PMI)algorithm with Laplacian smoothing is used to distinguish sentiment tendency of new words found in the data set to form SLNW by putting new words to basic sentiment lexicon.Experiments show that the sentiment analysis based on SLNW performs better than others.Precision,recall and F-measure are improved in both topic and non-topic Weibo data sets. 展开更多
关键词 sentiment lexicon new word discovery left-right entropy sentiment analysis point mutual information(PMI)
下载PDF
LexDeep:Hybrid Lexicon and Deep Learning Sentiment Analysis Using Twitter for Unemployment-Related Discussions During COVID-19
3
作者 Azlinah Mohamed Zuhaira Muhammad Zain +5 位作者 Hadil Shaiba Nazik Alturki Ghadah Aldehim Sapiah Sakri Saiful Farik Mat Yatin Jasni Mohamad Zain 《Computers, Materials & Continua》 SCIE EI 2023年第4期1577-1601,共25页
The COVID-19 pandemic has spread globally,resulting in financialinstability in many countries and reductions in the per capita grossdomestic product.Sentiment analysis is a cost-effective method for acquiringsentiment... The COVID-19 pandemic has spread globally,resulting in financialinstability in many countries and reductions in the per capita grossdomestic product.Sentiment analysis is a cost-effective method for acquiringsentiments based on household income loss,as expressed on social media.However,limited research has been conducted in this domain using theLexDeep approach.This study aimed to explore social trend analytics usingLexDeep,which is a hybrid sentiment analysis technique,on Twitter to capturethe risk of household income loss during the COVID-19 pandemic.First,tweet data were collected using Twint with relevant keywords before(9 March2019 to 17 March 2020)and during(18 March 2020 to 21 August 2021)thepandemic.Subsequently,the tweets were annotated using VADER(lexiconbased)and fed into deep learning classifiers,and experiments were conductedusing several embeddings,namely simple embedding,Global Vectors,andWord2Vec,to classify the sentiments expressed in the tweets.The performanceof each LexDeep model was evaluated and compared with that of a supportvector machine(SVM).Finally,the unemployment rates before and duringCOVID-19 were analysed to gain insights into the differences in unemploymentpercentages through social media input and analysis.The resultsdemonstrated that all LexDeep models with simple embedding outperformedthe SVM.This confirmed the superiority of the proposed LexDeep modelover a classical machine learning classifier in performing sentiment analysistasks for domain-specific sentiments.In terms of the risk of income loss,the unemployment issue is highly politicised on both the regional and globalscales;thus,if a country cannot combat this issue,the global economy will alsobe affected.Future research should develop a utility maximisation algorithmfor household welfare evaluation,given the percentage risk of income lossowing to COVID-19. 展开更多
关键词 sentiment analysis sentiment lexicon machine learning imbalanced data deep learning method unemployment rate
下载PDF
融合情感词典与深度学习的文本情感分析研究
4
作者 王浩畅 王宇坤 Marius Gabriel Petrescu 《计算机与数字工程》 2024年第2期451-455,共5页
文本情感分析是自然语言处理领域内的重点研究方向。当前Word2vec词向量结合神经网络的深度学习模型在中文文本情感分析研究中取得了不错的成绩。然而仅使用词向量模型作为文本表示进行模型学习时,会丢失当前词的情感信息。故论文提出... 文本情感分析是自然语言处理领域内的重点研究方向。当前Word2vec词向量结合神经网络的深度学习模型在中文文本情感分析研究中取得了不错的成绩。然而仅使用词向量模型作为文本表示进行模型学习时,会丢失当前词的情感信息。故论文提出一种基于情感词典结合双向长短期记忆网络和注意力机制的文本情感分析模型SABLSTM。该模型在酒店数据集上的分类准确率是93.17%,比仅结合了注意力机制的双向长短期记忆网络模型的准确率提升了1.56%。由此可见,以情感词典作为先验知识进行模型训练,可以提升中文文本情感分析任务的效果。 展开更多
关键词 情感分析 情感词典 注意力机制 双向长短期记忆网络
下载PDF
基于改进TF-IDF与BERT的领域情感词典构建方法 被引量:1
5
作者 蒋昊达 赵春蕾 +1 位作者 陈瀚 王春东 《计算机科学》 CSCD 北大核心 2024年第S01期150-158,共9页
领域情感词典的构建是领域文本情感分析的基础。现有的领域情感词典构建方法存在所筛选候选情感词冗余度高、情感极性判断失准、领域依赖性强等问题。为了提高所筛选候选情感词的领域性和判断领域情感词极性的准确程度,提出了一种基于... 领域情感词典的构建是领域文本情感分析的基础。现有的领域情感词典构建方法存在所筛选候选情感词冗余度高、情感极性判断失准、领域依赖性强等问题。为了提高所筛选候选情感词的领域性和判断领域情感词极性的准确程度,提出了一种基于改进词频-逆文档频率(TF-IDF)与BERT的领域情感词典构建方法。该方法在筛选领域候选情感词阶段对TF-IDF算法进行改进,将隐含狄利克雷分布(LDA)算法与改进后的TF-IDF算法结合,进行领域性修正,提升了所筛选候选情感词的领域性;在候选情感词极性判断阶段,将情感倾向点互信息算法(SO-PMI)与BERT结合,利用领域情感词微调BERT分类模型,提高了判断领域候选情感词情感极性的准确程度。在不同领域的用户评论数据集上进行实验,结果表明,该方法可以提高所构建领域情感词典的质量,使用该方法构建的领域情感词典用于汽车领域和手机领域文本情感分析的F1值分别达到78.02%和88.35%。 展开更多
关键词 情感分析 领域情感词典 词频-逆文档频率 隐含狄利克雷分布 情感倾向点互信息算法 BERT模型
下载PDF
融合多特征和表情情感词典的性别对立言论识别方法
6
作者 马子晨 张顺香 +1 位作者 刘云朵 朱广丽 《数据采集与处理》 CSCD 北大核心 2024年第3期699-709,共11页
为识别相关极端言论,提出了一种融合多特征和表情情感词典的性别对立言论识别方法。首先,使用BERT(Bidirectional encoder representation from transformer)提取输入文本的字符特征,并使用Word2Vec提取输入文本中五笔、郑码以及拼音3... 为识别相关极端言论,提出了一种融合多特征和表情情感词典的性别对立言论识别方法。首先,使用BERT(Bidirectional encoder representation from transformer)提取输入文本的字符特征,并使用Word2Vec提取输入文本中五笔、郑码以及拼音3个方面的特征;然后,将这4个方面的特征进行融合,再输入到Bi-GRU(Bi-directional gated recurrent unit)网络中学习更深层次的语义信息;最后,通过全连接层加SoftMax函数计算出情感极性概率,并融合表情情感词典判别输入文本是否为性别对立言论。通过在自行收集的中文性别对立数据集上进行实验,与未加入特征和表情情感词典的方法相比,在F1值上有5.19%的提升。同时,在公开中文情感分析数据集Weibo_senti_100k上进行验证,证明了本方法的泛化性。 展开更多
关键词 性别对立 表情情感词典 多特征 BERT Bi-GRU Word2Vec
下载PDF
引文情感识别研究进展及评述
7
作者 王心玥 赵丹群 《情报理论与实践》 北大核心 2024年第1期173-181,189,共10页
[目的/意义]引文情感识别是全文本计量时代引文内容分析的重要研究议题之一,它与引文动机/功能识别、引文主题分析、引文摘要自动生成等存在较强的关联性,可为学术评价、知识图谱构建/绘制等问题的解决提供有效的研究支撑,具有较高研究... [目的/意义]引文情感识别是全文本计量时代引文内容分析的重要研究议题之一,它与引文动机/功能识别、引文主题分析、引文摘要自动生成等存在较强的关联性,可为学术评价、知识图谱构建/绘制等问题的解决提供有效的研究支撑,具有较高研究价值。[方法/过程]通过文献调研分析,从引文语料集创建、情感词典使用、情感识别算法应用及存在问题4个方面,对国内外引文情感识别的研究进展进行全面梳理和分析评述。[结果/结论]引文情感识别已从早期的基于情感词典方法发展到当前基于机器学习算法的新阶段,并正由传统机器学习进一步向深度学习推进。亟待解决的主要问题有:(1)缺乏大规模高质量的引文语料集,对引文语料蕴含的特有价值(引文特征)的挖掘利用严重不足;(2)情感词典方法严重依赖情感词典自身的完备性,机器学习算法(分类模型)的参数优化及识别效果仍有提升空间,对两类方法的有机融合利用尚需深入探索;(3)更细粒度和更多维度的引文情感识别研究及相关应用实践有待进一步拓展和深化。 展开更多
关键词 引文情感识别 引文情感分析 引文内容分析 情感词典 机器学习
下载PDF
基于交互注意力机制的心理咨询文本情感分类模型
8
作者 汪雨晴 朱广丽 +2 位作者 段文杰 李书羽 周若彤 《计算机应用》 CSCD 北大核心 2024年第8期2393-2399,共7页
心理咨询场景下的情感分类旨在获得咨询者话语的情感倾向,为建立心理咨询AI助手提供支持。现有的方法利用语境信息获取文本情感倾向,但未考虑对话记录中当前句与前向近邻句之间的情感传递。针对这一问题,提出一种基于交互注意力(AOA)机... 心理咨询场景下的情感分类旨在获得咨询者话语的情感倾向,为建立心理咨询AI助手提供支持。现有的方法利用语境信息获取文本情感倾向,但未考虑对话记录中当前句与前向近邻句之间的情感传递。针对这一问题,提出一种基于交互注意力(AOA)机制的心理咨询文本情感分类模型,根据时序对历史情感词分配权重,进而提高分类准确率。利用构建的心理健康情感词典分别提取对话双方的历史情感词序列,再将当前句和历史情感词序列输入到双向长短期记忆(BiLSTM)网络获取对应的特征向量,并利用艾宾浩斯遗忘曲线对历史情感词序列分配权重。通过AOA机制获得惯性特征和交互特征,并结合文本特征输入到分类层计算情感倾向概率。在公开数据集Emotional First Aid Dataset上的实验结果表明,相较于Caps-DGCN(Capsule network and Directional Graph Convolutional Network)模型,所提模型的F1值提高了1.55%。可见,所提模型可以有效提升心理咨询文本的情感分类效果。 展开更多
关键词 心理咨询 心理健康情感词典 艾宾浩斯遗忘曲线 交互注意力机制 双向长短期记忆网络
下载PDF
基于情感词典的情感分析在抑郁中的研究进展(综述) 被引量:1
9
作者 王瑶菡 曾利红 +2 位作者 王颖 唐琴 秦春香 《中国健康心理学杂志》 2024年第1期24-29,共6页
抑郁是常见的精神障碍之一,早期的识别与筛查是诊断和管理的前提与基础,基于情感词典的情感分析方法通过获取用户在社交媒体中发布的文本构建词典,利用程序语言构建模型,以分析用户的态度、情绪。本文对基于情感词典的情感分析的概况和... 抑郁是常见的精神障碍之一,早期的识别与筛查是诊断和管理的前提与基础,基于情感词典的情感分析方法通过获取用户在社交媒体中发布的文本构建词典,利用程序语言构建模型,以分析用户的态度、情绪。本文对基于情感词典的情感分析的概况和实施方法进行介绍,分析其在抑郁领域的应用及发展前景,旨在为利用互联网早期识别与筛查抑郁个体提供参考,实现心理健康状态智能监测服务。 展开更多
关键词 情感词典 抑郁障碍 情感分析 心理健康
下载PDF
基于情感-主题协同演化模型的突发信息安全事件网络舆情分析
10
作者 李善成 刘慧 《图书情报研究》 2024年第1期120-128,F0003,共10页
[目的/意义]针对突发信息安全事件,探索舆情生命周期中各阶段公众的情感倾向与关注的热点主题,快速挖掘网络舆情演化特征与发展趋势,有助于政府、企业和相关部门对舆情的监测与处理。[方法/过程]以滴滴事件为例,首先搜集事件相关微博评... [目的/意义]针对突发信息安全事件,探索舆情生命周期中各阶段公众的情感倾向与关注的热点主题,快速挖掘网络舆情演化特征与发展趋势,有助于政府、企业和相关部门对舆情的监测与处理。[方法/过程]以滴滴事件为例,首先搜集事件相关微博评论文本,对舆情演化周期进行阶段划分,使用基于改进TF-IDF方法和LDA模型对各阶段进行主题挖掘,并构建融入领域情感词与表情符号的情感词典对各阶段下不同主题进行情感分析,得到舆情周期内主题与情感特征的协同演化趋势。[结果/结论]所提研究方法得到的舆情演化趋势能够有效反映突发事件各阶段的主题情感特征,有助于引导管控网络舆情,为舆情治理措施的制定提供科学依据。 展开更多
关键词 网络舆情 主题挖掘 LDA 情感词典 协同演化
下载PDF
基于扩充词典和规则集的突发事件评论情感分类
11
作者 仲兆满 熊玉龙 黄贤波 《计算机工程与设计》 北大核心 2024年第9期2812-2820,共9页
为准确分析突发事件发生后网民评论文本的情感倾向,提出一种结合扩充情感词典和规则集的情感分析模型。根据词语信息熵筛选领域情感词汇,利用卡方检验判断领域情感词汇的情感极性,得到突发事件领域情感词典;根据文本情感规则集与扩充情... 为准确分析突发事件发生后网民评论文本的情感倾向,提出一种结合扩充情感词典和规则集的情感分析模型。根据词语信息熵筛选领域情感词汇,利用卡方检验判断领域情感词汇的情感极性,得到突发事件领域情感词典;根据文本情感规则集与扩充情感词典计算文本情感值,对低于情感值阈值的文本使用集成学习模型进行二次分类,得到突发事件评论文本的情感类别。通过实验验证了该模型的有效性,为突发事件情感分析提供了可参考的模型和求解算法。 展开更多
关键词 情感分析 突发事件 情感词典 规则集 信息熵 集成学习 卡方检验
下载PDF
融合Skip-gram与R-SOPMI的教育领域情感词典构建 被引量:3
12
作者 陈俊 席宁丽 +1 位作者 李佳敏 万晓容 《应用科学学报》 CAS CSCD 北大核心 2023年第5期870-880,共11页
提出一种基于特征融合的细粒度教育领域情感词典构建方法。首先构建了教育领域语料库,包含正式、非正式领域情绪特征;其次提出一种融合特征的领域情绪词典构建方法,在情绪划分基础上识别词的语言概率特征以及统计概率特征,改进情感倾向... 提出一种基于特征融合的细粒度教育领域情感词典构建方法。首先构建了教育领域语料库,包含正式、非正式领域情绪特征;其次提出一种融合特征的领域情绪词典构建方法,在情绪划分基础上识别词的语言概率特征以及统计概率特征,改进情感倾向点互信息,提出用于情绪分类的情感倾向点互信息算法,实现共现多分类情绪划分;最后得到细粒度教育领域情感词典,词典扩充至39 138个情绪词。实验表明:使用所提出方法构建的教育领域情绪词典除情绪“怒”以外,各类别F1综合指标均高于78.09%,整体性能良好。与通用词典相比,宏平均准确率、宏召回率和宏F1分别提升了21.95%、2.50%和13.01%,表明该融合特征方法能有效提取领域特征进而完成细粒度领域词典构建。 展开更多
关键词 情感词典 情绪分类 词向量 融合特征
下载PDF
方面级情感分析综述 被引量:4
13
作者 李阳 王石 +3 位作者 朱俊武 梁明轩 高翔 焦志翔 《计算机科学》 CSCD 北大核心 2023年第S01期24-30,共7页
情感分析是自然语言处理领域的重要分支之一。随着时代的发展,为了能从文本数据中提取出更多的情感信息,方面级情感分析在情感分析中的关注度越来越高。首先介绍方面级情感分析的背景知识、相关概念,并从方面抽取和方面情感分类两个子... 情感分析是自然语言处理领域的重要分支之一。随着时代的发展,为了能从文本数据中提取出更多的情感信息,方面级情感分析在情感分析中的关注度越来越高。首先介绍方面级情感分析的背景知识、相关概念,并从方面抽取和方面情感分类两个子任务角度进行阐述。在方面抽取方面,介绍了基于相似度算法、主题模型和序列标注的相关方法。在方面情感分类方面,介绍了基于情感词典与规则、机器学习和深度学习的相关方法,并整理了方面级情感分析中常用的中英文数据集和情感字典,最后对方面级情感分析目前面临的挑战和未来的发展方向做出总结和展望。 展开更多
关键词 情感分析 方面抽取 方面情感分类 情感词典 深度学习
下载PDF
融合情感词典和自注意力的双通道情感分析模型 被引量:2
14
作者 巨家骥 黄勃 +1 位作者 张帅 郭茹燕 《数据与计算发展前沿》 CSCD 2023年第4期101-111,共11页
【应用背景】针对自然语言处理中的情感分析任务,目前的深度学习方法还是通过大量的数据训练来逐步提升效果,并没有充分利用文本中的情感词信息。【方法】本文提出了一种集成了情感词典和注意力机制的双通道文本情感分析模型。基于自注... 【应用背景】针对自然语言处理中的情感分析任务,目前的深度学习方法还是通过大量的数据训练来逐步提升效果,并没有充分利用文本中的情感词信息。【方法】本文提出了一种集成了情感词典和注意力机制的双通道文本情感分析模型。基于自注意力机制的通道负责提取语义特征,基于情感注意力的通道负责提取情感特征,两个通道分别提取的特征融合后获得文本最终的向量表达。同时引入一种注意力软约束来平衡两个通道中的注意力。【结果】实验结果表明,双通道的结构能够分别关注文本的不同特征,语义特征和情感特征结合起来有效提升了模型的分类性能。由于集成了情感词典,模型还具有较好的可解释性。【结论】本文提出的情感分析模型与相关模型相比拥有较好的性能和可解释性。 展开更多
关键词 深度学习 情感词典 文本情感分析 双通道 注意力
下载PDF
有效的中文微博短文本倾向性分类算法 被引量:39
15
作者 韩忠明 张玉沙 +2 位作者 张慧 万月亮 黄今慧 《计算机应用与软件》 CSCD 北大核心 2012年第10期89-93,共5页
对具有长度短、结构复杂以及变形词多等特点的短文本倾向性分类进行深入研究,目的是提高倾向性分类的准确性和效率。以HowNet的情感词典为基础,提出一个微博新词发现算法,构建微博情感词典。在对文本进行分句、分词、标注、情感处理等后... 对具有长度短、结构复杂以及变形词多等特点的短文本倾向性分类进行深入研究,目的是提高倾向性分类的准确性和效率。以HowNet的情感词典为基础,提出一个微博新词发现算法,构建微博情感词典。在对文本进行分句、分词、标注、情感处理等后,构建一个自动机来计算短文本情感倾向性。为了客观评价该方法,选择基于HowNet的分类方法、基于SVM的分类方法进行比较性实验。实验结果表明提出的方法在一般文本分类上与SVM效果类似,在短文本上则具有明显的优势。同时该方法在效率上也具有突出优势。 展开更多
关键词 倾向性 情感 词典 自动机 知网 支持向量机
下载PDF
基于情感词典扩展技术的网络舆情倾向性分析 被引量:68
16
作者 杨超 冯时 +2 位作者 王大玲 杨楠 于戈 《小型微型计算机系统》 CSCD 北大核心 2010年第4期691-695,共5页
随着Web2.0时代的到来,网络已逐渐成为反映社会舆情的重要载体之一,网络舆情发现及网民的观点和倾向性挖掘也成为新的研究热点,但是目前尚无有效反应网民对热点事件或话题总体态度的舆情分析系统.本文针对网民关于话题评论简单、数目众... 随着Web2.0时代的到来,网络已逐渐成为反映社会舆情的重要载体之一,网络舆情发现及网民的观点和倾向性挖掘也成为新的研究热点,但是目前尚无有效反应网民对热点事件或话题总体态度的舆情分析系统.本文针对网民关于话题评论简单、数目众多的特点,应用HowNet和NTUSD两种资源对现有情感词典进行扩展,建立了一个新的、具有倾向程度的情感词典.基于扩展的情感词典,开发了一个半自动化网络舆情分析系统.该系统能够为用户提供更加细致。 展开更多
关键词 观点挖掘 情感词典 倾向性分析 网络舆情
下载PDF
基于语义规则的Web金融文本情感分析 被引量:39
17
作者 吴江 唐常杰 +1 位作者 李太勇 崔亮 《计算机应用》 CSCD 北大核心 2014年第2期481-485,495,共6页
为有效提高非结构化Web金融文本情感倾向和强度分析的精度,提出了基于语义规则的Web金融文本情感分析算法(SAFT-SR)。该算法基于Apriori算法对金融文本进行属性抽取,构建金融情感词典和语义规则识别情感单元及强度,进而得到文本的情感... 为有效提高非结构化Web金融文本情感倾向和强度分析的精度,提出了基于语义规则的Web金融文本情感分析算法(SAFT-SR)。该算法基于Apriori算法对金融文本进行属性抽取,构建金融情感词典和语义规则识别情感单元及强度,进而得到文本的情感倾向和强度。实验结果表明,与Ku提出的算法相比,在情感倾向分类方面,算法SAFT-SR情感分类性能良好,提高了分类器的F值、查全率和查准率;在情感强度计算方面,算法SAFT-SR的误差更小,更接近真实评分,证明了SAFT-SR是一种有效的金融文本情感分析算法。 展开更多
关键词 Web金融文本 情感词典 语义规则 情感分析 情感倾向
下载PDF
基于微博表情符号的情感词典构建研究 被引量:17
18
作者 桂斌 杨小平 +1 位作者 张中夏 肖文韬 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第5期537-541,共5页
基于微博表情符号,提出一种自动构建情感词典的方法.从微博平台抓取大量带有表情符号的微博文本,并依据表情符号对微博文本进行情感倾向标注,生成情感语料库.对语料库进行分词、去重等预处理工作,根据词性规则抽取微博文本中情感词,统... 基于微博表情符号,提出一种自动构建情感词典的方法.从微博平台抓取大量带有表情符号的微博文本,并依据表情符号对微博文本进行情感倾向标注,生成情感语料库.对语料库进行分词、去重等预处理工作,根据词性规则抽取微博文本中情感词,统计每个情感词在正向和负向语料库中出现的次数,计算情感词的卡方统计值获得情感强度,根据情感词在正负微博文本中出现的概率判定情感词的倾向性,进而生成情感词典.这是一种全新的思路.以人工标注的情感词典为基准数据,实验结果表明,本文方法标注情感词的准确率在80%左右,在情绪词强度阈值θ为20、30时,生成情感词典综合F值最好,达到了82%以上. 展开更多
关键词 表情符号 情感词典 语料库 情感极性
下载PDF
基于双语信息和标签传播算法的中文情感词典构建方法 被引量:35
19
作者 李寿山 李逸薇 +1 位作者 黄居仁 苏艳 《中文信息学报》 CSCD 北大核心 2013年第6期75-81,共7页
文本情感分析是目前自然语言处理领域的一个热点研究问题,具有广泛的实用价值和理论研究意义。情感词典构建则是文本情感分析的一项基础任务,即将词语按照情感倾向分为褒义、中性或者贬义。然而,中文情感词典构建存在两个主要问题:1)许... 文本情感分析是目前自然语言处理领域的一个热点研究问题,具有广泛的实用价值和理论研究意义。情感词典构建则是文本情感分析的一项基础任务,即将词语按照情感倾向分为褒义、中性或者贬义。然而,中文情感词典构建存在两个主要问题:1)许多情感词存在多义、歧义的现象,即一个词语在不同语境中它的语义倾向也不尽相同,这给词语的情感计算带来困难;2)由国内外相关研究现状可知,中文情感字典建设的可用资源相对较少。考虑到英文情感分析研究中存在大量语料和词典,该文借助机器翻译系统,结合双语言资源的约束信息,利用标签传播算法(LP)计算词语的情感信息。在四个领域的实验结果显示我们的方法能获得一个分类精度高、覆盖领域语境的中文情感词典。 展开更多
关键词 情感分析 双语信息 情感字典 标签传播
下载PDF
大规模情感词典的构建及其在情感分类中的应用 被引量:53
20
作者 赵妍妍 秦兵 +1 位作者 石秋慧 刘挺 《中文信息学报》 CSCD 北大核心 2017年第2期187-193,共7页
以微博为代表的社会媒体的飞速发展为情感分析方向带来巨大的资源,同时也对情感分析算法的性能提出了更大的挑战。其中,现有的情感词典尤其是中文情感词典规模不足是影响情感分析性能的一个重要因素。为此,该文基于海量的微博数据,使用... 以微博为代表的社会媒体的飞速发展为情感分析方向带来巨大的资源,同时也对情感分析算法的性能提出了更大的挑战。其中,现有的情感词典尤其是中文情感词典规模不足是影响情感分析性能的一个重要因素。为此,该文基于海量的微博数据,使用简单的文本统计算法,构建了一个十万词语/词组的大规模情感词典。我们以情感分析的基础任务——情感分类为例,将大规模情感词典作为特征用于该任务上,实验结果表明大规模词典有助于情感分类性能的提高。 展开更多
关键词 情感词典 情感分析 情感分类 微博
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部