期刊文献+
共找到325篇文章
< 1 2 17 >
每页显示 20 50 100
Topic Modelling and Sentimental Analysis of Students’Reviews
1
作者 Omer S.Alkhnbashi Rasheed Mohammad Nassr 《Computers, Materials & Continua》 SCIE EI 2023年第3期6835-6848,共14页
Globally,educational institutions have reported a dramatic shift to online learning in an effort to contain the COVID-19 pandemic.The fundamental concern has been the continuance of education.As a result,several novel... Globally,educational institutions have reported a dramatic shift to online learning in an effort to contain the COVID-19 pandemic.The fundamental concern has been the continuance of education.As a result,several novel solutions have been developed to address technical and pedagogical issues.However,these were not the only difficulties that students faced.The implemented solutions involved the operation of the educational process with less regard for students’changing circumstances,which obliged them to study from home.Students should be asked to provide a full list of their concerns.As a result,student reflections,including those from Saudi Arabia,have been analysed to identify obstacles encountered during the COVID-19 pandemic.However,most of the analyses relied on closed-ended questions,which limited student involvement.To delve into students’responses,this study used open-ended questions,a qualitative method(content analysis),a quantitative method(topic modelling),and a sentimental analysis.This study also looked at students’emotional states during and after the COVID-19 pandemic.In terms of determining trends in students’input,the results showed that quantitative and qualitative methods produced similar outcomes.Students had unfavourable sentiments about studying during COVID-19 and positive sentiments about the face-to-face study.Furthermore,topic modelling has revealed that the majority of difficulties are more related to the environment(home)and social life.Students were less accepting of online learning.As a result,it is possible to conclude that face-to-face study still attracts students and provides benefits that online study cannot,such as social interaction and effective eye-to-eye communication. 展开更多
关键词 Topic modelling sentimental analysis COVID-19 students’input
下载PDF
Deep Learning with Natural Language Processing Enabled Sentimental Analysis on Sarcasm Classification
2
作者 Abdul Rahaman Wahab Sait Mohamad Khairi Ishak 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2553-2567,共15页
Sentiment analysis(SA)is the procedure of recognizing the emotions related to the data that exist in social networking.The existence of sarcasm in tex-tual data is a major challenge in the efficiency of the SA.Earlier... Sentiment analysis(SA)is the procedure of recognizing the emotions related to the data that exist in social networking.The existence of sarcasm in tex-tual data is a major challenge in the efficiency of the SA.Earlier works on sarcasm detection on text utilize lexical as well as pragmatic cues namely interjection,punctuations,and sentiment shift that are vital indicators of sarcasm.With the advent of deep-learning,recent works,leveraging neural networks in learning lexical and contextual features,removing the need for handcrafted feature.In this aspect,this study designs a deep learning with natural language processing enabled SA(DLNLP-SA)technique for sarcasm classification.The proposed DLNLP-SA technique aims to detect and classify the occurrence of sarcasm in the input data.Besides,the DLNLP-SA technique holds various sub-processes namely preprocessing,feature vector conversion,and classification.Initially,the pre-processing is performed in diverse ways such as single character removal,multi-spaces removal,URL removal,stopword removal,and tokenization.Secondly,the transformation of feature vectors takes place using the N-gram feature vector technique.Finally,mayfly optimization(MFO)with multi-head self-attention based gated recurrent unit(MHSA-GRU)model is employed for the detection and classification of sarcasm.To verify the enhanced outcomes of the DLNLP-SA model,a comprehensive experimental investigation is performed on the News Headlines Dataset from Kaggle Repository and the results signified the supremacy over the existing approaches. 展开更多
关键词 Sentiment analysis sarcasm detection deep learning natural language processing N-GRAMS hyperparameter tuning
下载PDF
Automatic Sentimental Analysis by Firefly with Levy and Multilayer Perceptron
3
作者 D.Elangovan V.Subedha 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2797-2808,共12页
The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and ideas.Many people share their views and ideas around the world through social media like Face... The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and ideas.Many people share their views and ideas around the world through social media like Facebook and Twitter.The goal of opinion mining,commonly referred to as sentiment analysis,is to categorise and forecast a target’s opinion.Depending on if they provide a positive or negative perspective on a given topic,text documents or sentences can be classified.When compared to sentiment analysis,text categorization may appear to be a simple process,but number of challenges have prompted numerous studies in this area.A feature selection-based classification algorithm in conjunction with the firefly with levy and multilayer perceptron(MLP)techniques has been proposed as a way to automate sentiment analysis(SA).In this study,online product reviews can be enhanced by integrating classification and feature election.The firefly(FF)algorithm was used to extract features from online product reviews,and a multi-layer perceptron was used to classify sentiment(MLP).The experiment employs two datasets,and the results are assessed using a variety of criteria.On account of these tests,it is possible to conclude that the FFL-MLP algorithm has the better classification performance for Canon(98%accuracy)and iPod(99%accuracy). 展开更多
关键词 Firefly algorithm feature selection feature extraction multi-layer perceptron automatic sentiment analysis
下载PDF
A Sentimental Analysis System for Film Review based on Deep Learning
4
作者 Keyao Wu 《Journal of Electronic Research and Application》 2019年第5期23-24,共2页
The paper will be introduced as sentimental analysis system of film criticism based on deep learning.Which contains four main processing sections.Compared with other systems,our sentimental analysis system based on de... The paper will be introduced as sentimental analysis system of film criticism based on deep learning.Which contains four main processing sections.Compared with other systems,our sentimental analysis system based on deep learning has plenty of advantages,including simple structure,high accuracy,and rapid encoding speed. 展开更多
关键词 DEEP learning Data PROCESSING Convolutional NEURAL Networks sentimental analysis system
下载PDF
One as Form and Shadow: Theater and the Space of Sentimentality in Nineteenth-Century Beijing 被引量:1
5
作者 Mark Stevenson 《Frontiers of History in China》 2014年第2期225-246,共22页
t Read as a form of social document, one of the most interesting areas of life illuminated by the huapu ("flower-guides," that is, theatergoers' lists, rankings, and descriptions of the Beijing theater's boy-act... t Read as a form of social document, one of the most interesting areas of life illuminated by the huapu ("flower-guides," that is, theatergoers' lists, rankings, and descriptions of the Beijing theater's boy-actors), is what they show us in relation to literati leisure in nineteenth-century Beijing. In this paper I employ the spatial/relational tropes of parergon, ekphrasis, and heterotopia to consider how huapu texts are positioned as supplement in relation to the staging of dramatic works, to boy-actors' performance and embodiment of erotic fantasy, as well as to performance and play among aspiring paragons of gentlemanly refinement. Doubly turned away from the stage and from public events, huapu celebrate several levels of subjective taste and deploy varying tropes of social exchange, and it was by playing with these things that they also recorded and reproduced a literati need to play with contemporary confusion around the place of private and public discourse. 展开更多
关键词 BEIJING nineteenth century LITERATI flower-guides sentimentalITY
原文传递
Sentimentalism and the "Cult of Qing": Writing Romantic Love in 18th-Century England and Late Ming China 被引量:1
6
作者 Wen Jin 《Fudan Journal of the Humanities and Social Sciences》 2014年第4期551-562,共12页
This essay analyzes a crucial difference in the ways in which erotic feelings are articulated in the sentimental novel from eighteenth-century England and Feng Menglong's stories of qing from late Ming (1573-1644).... This essay analyzes a crucial difference in the ways in which erotic feelings are articulated in the sentimental novel from eighteenth-century England and Feng Menglong's stories of qing from late Ming (1573-1644). It compares Feng's stories and Samuel Richardson's novels with a focus on how they chart the courses of love affairs. The essay argues that English sentimental novels accentuate psychological depth while their Chinese counterparts preclude depth with ritualized expressions of feelings. The contrast goes a long way to explaining the bifurcation of English and Chinese fiction in modern eras; one gives rise to several nuanced forms of psychological realism, modulating narrative perspectives as a way of mimicking the complex workings of layered consciousness. The Chinese stories of qing, on the other hand, suggest a different theory of love, one that downplays subjective control of feelings in favor of the effects of social or accidental circumstances. They evolve into a fictional tradition that aestheticizes and stylizes qing, reducing it to a surface of fixed patterns by virtue of inserting verse pieces into prose narratives. 展开更多
关键词 sentimental novel Cult of qing Xiaoshuo Psychological realism Samuel Richardson Feng Menglong
原文传递
Improve Chinese Aspect Sentiment Quadruplet Prediction via Instruction Learning Based on Large Generate Models
7
作者 Zhaoliang Wu Yuewei Wu +2 位作者 Xiaoli Feng Jiajun Zou Fulian Yin 《Computers, Materials & Continua》 SCIE EI 2024年第3期3391-3412,共22页
Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target ... Aspect-Based Sentiment Analysis(ABSA)is a fundamental area of research in Natural Language Processing(NLP).Within ABSA,Aspect Sentiment Quad Prediction(ASQP)aims to accurately identify sentiment quadruplets in target sentences,including aspect terms,aspect categories,corresponding opinion terms,and sentiment polarity.However,most existing research has focused on English datasets.Consequently,while ASQP has seen significant progress in English,the Chinese ASQP task has remained relatively stagnant.Drawing inspiration from methods applied to English ASQP,we propose Chinese generation templates and employ prompt-based instruction learning to enhance the model’s understanding of the task,ultimately improving ASQP performance in the Chinese context.Ultimately,under the same pre-training model configuration,our approach achieved a 5.79%improvement in the F1 score compared to the previously leading method.Furthermore,when utilizing a larger model with reduced training parameters,the F1 score demonstrated an 8.14%enhancement.Additionally,we suggest a novel evaluation metric based on the characteristics of generative models,better-reflecting model generalization.Experimental results validate the effectiveness of our approach. 展开更多
关键词 ABSA ASQP LLMs sentiment analysis Chinese comments
下载PDF
DeBERTa-GRU: Sentiment Analysis for Large Language Model
8
作者 Adel Assiri Abdu Gumaei +2 位作者 Faisal Mehmood Touqeer Abbas Sami Ullah 《Computers, Materials & Continua》 SCIE EI 2024年第6期4219-4236,共18页
Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whe... Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive,negative,neutral,or any other personal emotion to understand the sentiment context of the text.Sentiment analysis is essential in business and society because it impacts strategic decision-making.Sentiment analysis involves challenges due to lexical variation,an unlabeled dataset,and text distance correlations.The execution time increases due to the sequential processing of the sequence models.However,the calculation times for the Transformer models are reduced because of the parallel processing.This study uses a hybrid deep learning strategy to combine the strengths of the Transformer and Sequence models while ignoring their limitations.In particular,the proposed model integrates the Decoding-enhanced with Bidirectional Encoder Representations from Transformers(BERT)attention(DeBERTa)and the Gated Recurrent Unit(GRU)for sentiment analysis.Using the Decoding-enhanced BERT technique,the words are mapped into a compact,semantic word embedding space,and the Gated Recurrent Unit model can capture the distance contextual semantics correctly.The proposed hybrid model achieves F1-scores of 97%on the Twitter Large Language Model(LLM)dataset,which is much higher than the performance of new techniques. 展开更多
关键词 DeBERTa GRU Naive Bayes LSTM sentiment analysis large language model
下载PDF
Sentiment Analysis Using E-Commerce Review Keyword-Generated Image with a Hybrid Machine Learning-Based Model
9
作者 Jiawen Li Yuesheng Huang +3 位作者 Yayi Lu Leijun Wang Yongqi Ren Rongjun Chen 《Computers, Materials & Continua》 SCIE EI 2024年第7期1581-1599,共19页
In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in faci... In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in facing different shopping experience scenarios,this paper presents a sentiment analysis method that combines the ecommerce reviewkeyword-generated imagewith a hybrid machine learning-basedmodel,inwhich theWord2Vec-TextRank is used to extract keywords that act as the inputs for generating the related images by generative Artificial Intelligence(AI).Subsequently,a hybrid Convolutional Neural Network and Support Vector Machine(CNNSVM)model is applied for sentiment classification of those keyword-generated images.For method validation,the data randomly comprised of 5000 reviews from Amazon have been analyzed.With superior keyword extraction capability,the proposedmethod achieves impressive results on sentiment classification with a remarkable accuracy of up to 97.13%.Such performance demonstrates its advantages by using the text-to-image approach,providing a unique perspective for sentiment analysis in the e-commerce review data compared to the existing works.Thus,the proposed method enhances the reliability and insights of customer feedback surveys,which would also establish a novel direction in similar cases,such as social media monitoring and market trend research. 展开更多
关键词 Sentiment analysis keyword-generated image machine learning Word2Vec-TextRank CNN-SVM
下载PDF
Research on Sarcasm Detection Technology Based on Image-Text Fusion
10
作者 Xiaofang Jin Yuying Yang +1 位作者 YinanWu Ying Xu 《Computers, Materials & Continua》 SCIE EI 2024年第6期5225-5242,共18页
The emergence of new media in various fields has continuously strengthened the social aspect of social media.Netizens tend to express emotions in social interactions,and many people even use satire,metaphors,and other... The emergence of new media in various fields has continuously strengthened the social aspect of social media.Netizens tend to express emotions in social interactions,and many people even use satire,metaphors,and other techniques to express some negative emotions,it is necessary to detect sarcasm in social comment data.For sarcasm,the more reference data modalities used,the better the experimental effect.This paper conducts research on sarcasm detection technology based on image-text fusion data.To effectively utilize the features of each modality,a feature reconstruction output algorithm is proposed.This algorithm is based on the attention mechanism,learns the low-rank features of another modality through cross-modality,the eigenvectors are reconstructed for the corresponding modality through weighted averaging.When only the image modality in the dataset is used,the preprocessed data has outstanding performance in reconstructing the output model,with an accuracy rate of 87.6%.When using only the text modality data in the dataset,the reconstructed output model is optimal,with an accuracy rate of 85.2%.To improve feature fusion between modalities for effective classification,a weight adaptive learning algorithm is used.This algorithm uses a neural network combined with an attention mechanism to calculate the attention weight of each modality to achieve weight adaptive learning purposes,with an accuracy rate of 87.9%.Extensive experiments on a benchmark dataset demonstrate the superiority of our proposed model. 展开更多
关键词 Sentiment analysis sarcasm detection feature fusion feature reconstruction
下载PDF
RUSAS: Roman Urdu Sentiment Analysis System
11
作者 Kazim Jawad Muhammad Ahmad +1 位作者 Majdah Alvi Muhammad Bux Alvi 《Computers, Materials & Continua》 SCIE EI 2024年第4期1463-1480,共18页
Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify thesentiments in the opinionated text data. People share their judgments, reactions, and feedback on the intern... Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify thesentiments in the opinionated text data. People share their judgments, reactions, and feedback on the internetusing various languages. Urdu is one of them, and it is frequently used worldwide. Urdu-speaking people prefer tocommunicate on social media in Roman Urdu (RU), an English scripting style with the Urdu language dialect.Researchers have developed versatile lexical resources for features-rich comprehensive languages, but limitedlinguistic resources are available to facilitate the sentiment classification of Roman Urdu. This effort encompassesextracting subjective expressions in Roman Urdu and determining the implied opinionated text polarity. Theprimary sources of the dataset are Daraz (an e-commerce platform), Google Maps, and the manual effort. Thecontributions of this study include a Bilingual Roman Urdu Language Detector (BRULD) and a Roman UrduSpelling Checker (RUSC). These integrated modules accept the user input, detect the text language, correct thespellings, categorize the sentiments, and return the input sentence’s orientation with a sentiment intensity score.The developed system gains strength with each input experience gradually. The results show that the languagedetector gives an accuracy of 97.1% on a close domain dataset, with an overall sentiment classification accuracy of94.3%. 展开更多
关键词 Roman Urdu sentiment analysis Roman Urdu language detector Roman Urdu spelling checker FLASK
下载PDF
Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning
12
作者 Aizaz Ali Maqbool Khan +2 位作者 Khalil Khan Rehan Ullah Khan Abdulrahman Aloraini 《Computers, Materials & Continua》 SCIE EI 2024年第4期713-733,共21页
Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentime... Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language. 展开更多
关键词 Urdu sentiment analysis convolutional neural networks recurrent neural network deep learning natural language processing neural networks
下载PDF
Aspect-Level Sentiment Analysis Based on Deep Learning
13
作者 Mengqi Zhang Jiazhao Chai +2 位作者 Jianxiang Cao Jialing Ji Tong Yi 《Computers, Materials & Continua》 SCIE EI 2024年第3期3743-3762,共20页
In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also gr... In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also greatly improve the performance of models.However,previous studies did not take into account the relationship between user feature extraction and contextual terms.To address this issue,we use data feature extraction and deep learning combined to develop an aspect-level sentiment analysis method.To be specific,we design user comment feature extraction(UCFE)to distill salient features from users’historical comments and transform them into representative user feature vectors.Then,the aspect-sentence graph convolutional neural network(ASGCN)is used to incorporate innovative techniques for calculating adjacency matrices;meanwhile,ASGCN emphasizes capturing nuanced semantics within relationships among aspect words and syntactic dependency types.Afterward,three embedding methods are devised to embed the user feature vector into the ASGCN model.The empirical validations verify the effectiveness of these models,consistently surpassing conventional benchmarks and reaffirming the indispensable role of deep learning in advancing sentiment analysis methodologies. 展开更多
关键词 Aspect-level sentiment analysis deep learning graph convolutional neural network user features syntactic dependency tree
下载PDF
Structured Multi-Head Attention Stock Index Prediction Method Based Adaptive Public Opinion Sentiment Vector
14
作者 Cheng Zhao Zhe Peng +2 位作者 Xuefeng Lan Yuefeng Cen Zuxin Wang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1503-1523,共21页
The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment ... The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment risk.The quantification of investment sentiment indicators and the persistent analysis of their impact has been a complex and significant area of research.In this paper,a structured multi-head attention stock index prediction method based adaptive public opinion sentiment vector is proposed.The proposedmethod utilizes an innovative approach to transform numerous investor comments on social platforms over time into public opinion sentiment vectors expressing complex sentiments.It then analyzes the continuous impact of these vectors on the market through the use of aggregating techniques and public opinion data via a structured multi-head attention mechanism.The experimental results demonstrate that the public opinion sentiment vector can provide more comprehensive feedback on market sentiment than traditional sentiment polarity analysis.Furthermore,the multi-head attention mechanism is shown to improve prediction accuracy through attention convergence on each type of input information separately.Themean absolute percentage error(MAPE)of the proposedmethod is 0.463%,a reduction of 0.294% compared to the benchmark attention algorithm.Additionally,the market backtesting results indicate that the return was 24.560%,an improvement of 8.202% compared to the benchmark algorithm.These results suggest that themarket trading strategy based on thismethod has the potential to improve trading profits. 展开更多
关键词 Public opinion sentiment structured multi-head attention stock index prediction deep learning
下载PDF
A Robust Framework for Multimodal Sentiment Analysis with Noisy Labels Generated from Distributed Data Annotation
15
作者 Kai Jiang Bin Cao Jing Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2965-2984,共20页
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha... Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines. 展开更多
关键词 Distributed data collection multimodal sentiment analysis meta learning learn with noisy labels
下载PDF
GP‐FMLNet:A feature matrix learning network enhanced by glyph and phonetic information for Chinese sentiment analysis
16
作者 Jing Li Dezheng Zhang +2 位作者 Yonghong Xie Aziguli Wulamu Yao Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期960-972,共13页
Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a sin... Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms. 展开更多
关键词 aspect‐level sentiment analysis deep learning feature extraction glyph and phonetic feature matrix compound learning
下载PDF
Novel Static Security and Stability Control of Power Systems Based on Artificial Emotional Lazy Q-Learning
17
作者 Tao Bao Xiyuan Ma +3 位作者 Zhuohuan Li Duotong Yang Pengyu Wang Changcheng Zhou 《Energy Engineering》 EI 2024年第6期1713-1737,共25页
The stability problem of power grids has become increasingly serious in recent years as the size of novel power systems increases.In order to improve and ensure the stable operation of the novel power system,this stud... The stability problem of power grids has become increasingly serious in recent years as the size of novel power systems increases.In order to improve and ensure the stable operation of the novel power system,this study proposes an artificial emotional lazy Q-learning method,which combines artificial emotion,lazy learning,and reinforcement learning for static security and stability analysis of power systems.Moreover,this study compares the analysis results of the proposed method with those of the small disturbance method for a stand-alone power system and verifies that the proposed lazy Q-learning method is able to effectively screen useful data for learning,and improve the static security stability of the new type of power system more effectively than the traditional proportional-integral-differential control and Q-learning methods. 展开更多
关键词 Artificial sentiment static secure stable analysis Q-LEARNING lazy learning data filtering
下载PDF
Unlocking the Potential:A Comprehensive Systematic Review of ChatGPT in Natural Language Processing Tasks
18
作者 Ebtesam Ahmad Alomari 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期43-85,共43页
As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects in... As Natural Language Processing(NLP)continues to advance,driven by the emergence of sophisticated large language models such as ChatGPT,there has been a notable growth in research activity.This rapid uptake reflects increasing interest in the field and induces critical inquiries into ChatGPT’s applicability in the NLP domain.This review paper systematically investigates the role of ChatGPT in diverse NLP tasks,including information extraction,Name Entity Recognition(NER),event extraction,relation extraction,Part of Speech(PoS)tagging,text classification,sentiment analysis,emotion recognition and text annotation.The novelty of this work lies in its comprehensive analysis of the existing literature,addressing a critical gap in understanding ChatGPT’s adaptability,limitations,and optimal application.In this paper,we employed a systematic stepwise approach following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)framework to direct our search process and seek relevant studies.Our review reveals ChatGPT’s significant potential in enhancing various NLP tasks.Its adaptability in information extraction tasks,sentiment analysis,and text classification showcases its ability to comprehend diverse contexts and extract meaningful details.Additionally,ChatGPT’s flexibility in annotation tasks reducesmanual efforts and accelerates the annotation process,making it a valuable asset in NLP development and research.Furthermore,GPT-4 and prompt engineering emerge as a complementary mechanism,empowering users to guide the model and enhance overall accuracy.Despite its promising potential,challenges persist.The performance of ChatGP Tneeds tobe testedusingmore extensivedatasets anddiversedata structures.Subsequently,its limitations in handling domain-specific language and the need for fine-tuning in specific applications highlight the importance of further investigations to address these issues. 展开更多
关键词 Generative AI large languagemodel(LLM) natural language processing(NLP) ChatGPT GPT(generative pretraining transformer) GPT-4 sentiment analysis NER information extraction ANNOTATION text classification
下载PDF
Spatial-temporal Patterns of Urban Parks’Effects on the Sentiments and Their Associated Factors Based on Social Media Data——a Case Study in Beijing
19
作者 YUAN Yuting WANG Juan +3 位作者 WEI Yali ZHU Yanrong SHI Changsheng MENG Bin 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第2期95-110,共16页
As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who vi... As the pivotal green space,urban parks play an important role in urban residents’daily activities.Thy can not only bring people physical health,but also can be more likely to elicit positive sentiment to those who visit them.Recently,social media big data has provided new data sources for sentiment analysis.However,there was limited researches that explored the connection between urban parks and individual’s sentiments.Therefore,this study firstly employed a pre-trained language model(BERT,Bidirectional Encoder Representations from Transformers)to calculate sentiment scores based on social media data.Secondly,this study analysed the relationship between urban parks and individual’s sentiment from both spatial and temporal perspectives.Finally,by utilizing structural equation model(SEM),we identified 13 factors and analyzed its degree of the influence.The research findings are listed as below:①It confirmed that individuals generally experienced positive sentiment with high sentiment scores in the majority of urban parks;②The urban park type showed an influence on sentiment scores.In this study,higher sentiment scores observed in Eco-parks,comprehensive parks,and historical parks;③The urban parks level showed low impact on sentiment scores.With distinctions observed mainly at level-3 and level-4;④Compared to internal factors in parks,the external infrastructure surround them exerted more significant impact on sentiment scores.For instance,number of bus and subway stations around urban parks led to higher sentiment scores,while scenic spots and restaurants had inverse result.This study provided a novel method to quantify the services of various urban parks,which can be served as inspiration for similar studies in other cities and countries,enhancing their park planning and management strategies. 展开更多
关键词 urban parks sentiment analysis social media data SEM BEIJING
下载PDF
User Profile & Attitude Analysis Based on Unstructured Social Media and Online Activity
20
作者 Yuting Tan Vijay K. Madisetti 《Journal of Software Engineering and Applications》 2024年第6期463-473,共11页
As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain ... As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain interests or purchases. This generates a wealth of behavioral data, which, while invaluable to businesses, researchers, policymakers, and the cybersecurity sector, presents significant challenges due to its unstructured nature. Existing tools for analyzing this data often lack the capability to effectively retrieve and process it comprehensively. This paper addresses the need for an advanced analytical tool that ethically and legally collects and analyzes social media data and online activity logs, constructing detailed and structured user profiles. It reviews current solutions, highlights their limitations, and introduces a new approach, the Advanced Social Analyzer (ASAN), that bridges these gaps. The proposed solutions technical aspects, implementation, and evaluation are discussed, with results compared to existing methodologies. The paper concludes by suggesting future research directions to further enhance the utility and effectiveness of social media data analysis. 展开更多
关键词 Social Media User Behavior Analysis Sentiment Analysis Data Mining Machine Learning User Profiling CYBERSECURITY Behavioral Insights Personality Prediction
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部