期刊文献+
共找到202篇文章
< 1 2 11 >
每页显示 20 50 100
Topic Modelling and Sentimental Analysis of Students’Reviews
1
作者 Omer S.Alkhnbashi Rasheed Mohammad Nassr 《Computers, Materials & Continua》 SCIE EI 2023年第3期6835-6848,共14页
Globally,educational institutions have reported a dramatic shift to online learning in an effort to contain the COVID-19 pandemic.The fundamental concern has been the continuance of education.As a result,several novel... Globally,educational institutions have reported a dramatic shift to online learning in an effort to contain the COVID-19 pandemic.The fundamental concern has been the continuance of education.As a result,several novel solutions have been developed to address technical and pedagogical issues.However,these were not the only difficulties that students faced.The implemented solutions involved the operation of the educational process with less regard for students’changing circumstances,which obliged them to study from home.Students should be asked to provide a full list of their concerns.As a result,student reflections,including those from Saudi Arabia,have been analysed to identify obstacles encountered during the COVID-19 pandemic.However,most of the analyses relied on closed-ended questions,which limited student involvement.To delve into students’responses,this study used open-ended questions,a qualitative method(content analysis),a quantitative method(topic modelling),and a sentimental analysis.This study also looked at students’emotional states during and after the COVID-19 pandemic.In terms of determining trends in students’input,the results showed that quantitative and qualitative methods produced similar outcomes.Students had unfavourable sentiments about studying during COVID-19 and positive sentiments about the face-to-face study.Furthermore,topic modelling has revealed that the majority of difficulties are more related to the environment(home)and social life.Students were less accepting of online learning.As a result,it is possible to conclude that face-to-face study still attracts students and provides benefits that online study cannot,such as social interaction and effective eye-to-eye communication. 展开更多
关键词 Topic modelling sentimental analysis COVID-19 students’input
下载PDF
Deep Learning with Natural Language Processing Enabled Sentimental Analysis on Sarcasm Classification 被引量:1
2
作者 Abdul Rahaman Wahab Sait Mohamad Khairi Ishak 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2553-2567,共15页
Sentiment analysis(SA)is the procedure of recognizing the emotions related to the data that exist in social networking.The existence of sarcasm in tex-tual data is a major challenge in the efficiency of the SA.Earlier... Sentiment analysis(SA)is the procedure of recognizing the emotions related to the data that exist in social networking.The existence of sarcasm in tex-tual data is a major challenge in the efficiency of the SA.Earlier works on sarcasm detection on text utilize lexical as well as pragmatic cues namely interjection,punctuations,and sentiment shift that are vital indicators of sarcasm.With the advent of deep-learning,recent works,leveraging neural networks in learning lexical and contextual features,removing the need for handcrafted feature.In this aspect,this study designs a deep learning with natural language processing enabled SA(DLNLP-SA)technique for sarcasm classification.The proposed DLNLP-SA technique aims to detect and classify the occurrence of sarcasm in the input data.Besides,the DLNLP-SA technique holds various sub-processes namely preprocessing,feature vector conversion,and classification.Initially,the pre-processing is performed in diverse ways such as single character removal,multi-spaces removal,URL removal,stopword removal,and tokenization.Secondly,the transformation of feature vectors takes place using the N-gram feature vector technique.Finally,mayfly optimization(MFO)with multi-head self-attention based gated recurrent unit(MHSA-GRU)model is employed for the detection and classification of sarcasm.To verify the enhanced outcomes of the DLNLP-SA model,a comprehensive experimental investigation is performed on the News Headlines Dataset from Kaggle Repository and the results signified the supremacy over the existing approaches. 展开更多
关键词 Sentiment analysis sarcasm detection deep learning natural language processing N-GRAMS hyperparameter tuning
下载PDF
Automatic Sentimental Analysis by Firefly with Levy and Multilayer Perceptron
3
作者 D.Elangovan V.Subedha 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2797-2808,共12页
The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and ideas.Many people share their views and ideas around the world through social media like Face... The field of sentiment analysis(SA)has grown in tandem with the aid of social networking platforms to exchange opinions and ideas.Many people share their views and ideas around the world through social media like Facebook and Twitter.The goal of opinion mining,commonly referred to as sentiment analysis,is to categorise and forecast a target’s opinion.Depending on if they provide a positive or negative perspective on a given topic,text documents or sentences can be classified.When compared to sentiment analysis,text categorization may appear to be a simple process,but number of challenges have prompted numerous studies in this area.A feature selection-based classification algorithm in conjunction with the firefly with levy and multilayer perceptron(MLP)techniques has been proposed as a way to automate sentiment analysis(SA).In this study,online product reviews can be enhanced by integrating classification and feature election.The firefly(FF)algorithm was used to extract features from online product reviews,and a multi-layer perceptron was used to classify sentiment(MLP).The experiment employs two datasets,and the results are assessed using a variety of criteria.On account of these tests,it is possible to conclude that the FFL-MLP algorithm has the better classification performance for Canon(98%accuracy)and iPod(99%accuracy). 展开更多
关键词 Firefly algorithm feature selection feature extraction multi-layer perceptron automatic sentiment analysis
下载PDF
DeBERTa-GRU: Sentiment Analysis for Large Language Model
4
作者 Adel Assiri Abdu Gumaei +2 位作者 Faisal Mehmood Touqeer Abbas Sami Ullah 《Computers, Materials & Continua》 SCIE EI 2024年第6期4219-4236,共18页
Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whe... Modern technological advancements have made social media an essential component of daily life.Social media allow individuals to share thoughts,emotions,and ideas.Sentiment analysis plays the function of evaluating whether the sentiment of the text is positive,negative,neutral,or any other personal emotion to understand the sentiment context of the text.Sentiment analysis is essential in business and society because it impacts strategic decision-making.Sentiment analysis involves challenges due to lexical variation,an unlabeled dataset,and text distance correlations.The execution time increases due to the sequential processing of the sequence models.However,the calculation times for the Transformer models are reduced because of the parallel processing.This study uses a hybrid deep learning strategy to combine the strengths of the Transformer and Sequence models while ignoring their limitations.In particular,the proposed model integrates the Decoding-enhanced with Bidirectional Encoder Representations from Transformers(BERT)attention(DeBERTa)and the Gated Recurrent Unit(GRU)for sentiment analysis.Using the Decoding-enhanced BERT technique,the words are mapped into a compact,semantic word embedding space,and the Gated Recurrent Unit model can capture the distance contextual semantics correctly.The proposed hybrid model achieves F1-scores of 97%on the Twitter Large Language Model(LLM)dataset,which is much higher than the performance of new techniques. 展开更多
关键词 DeBERTa GRU Naive Bayes LSTM sentiment analysis large language model
下载PDF
Sentiment Analysis Using E-Commerce Review Keyword-Generated Image with a Hybrid Machine Learning-Based Model
5
作者 Jiawen Li Yuesheng Huang +3 位作者 Yayi Lu Leijun Wang Yongqi Ren Rongjun Chen 《Computers, Materials & Continua》 SCIE EI 2024年第7期1581-1599,共19页
In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in faci... In the context of the accelerated pace of daily life and the development of e-commerce,online shopping is a mainstreamway for consumers to access products and services.To understand their emotional expressions in facing different shopping experience scenarios,this paper presents a sentiment analysis method that combines the ecommerce reviewkeyword-generated imagewith a hybrid machine learning-basedmodel,inwhich theWord2Vec-TextRank is used to extract keywords that act as the inputs for generating the related images by generative Artificial Intelligence(AI).Subsequently,a hybrid Convolutional Neural Network and Support Vector Machine(CNNSVM)model is applied for sentiment classification of those keyword-generated images.For method validation,the data randomly comprised of 5000 reviews from Amazon have been analyzed.With superior keyword extraction capability,the proposedmethod achieves impressive results on sentiment classification with a remarkable accuracy of up to 97.13%.Such performance demonstrates its advantages by using the text-to-image approach,providing a unique perspective for sentiment analysis in the e-commerce review data compared to the existing works.Thus,the proposed method enhances the reliability and insights of customer feedback surveys,which would also establish a novel direction in similar cases,such as social media monitoring and market trend research. 展开更多
关键词 Sentiment analysis keyword-generated image machine learning Word2Vec-TextRank CNN-SVM
下载PDF
Sentiment Analysis of Low-Resource Language Literature Using Data Processing and Deep Learning
6
作者 Aizaz Ali Maqbool Khan +2 位作者 Khalil Khan Rehan Ullah Khan Abdulrahman Aloraini 《Computers, Materials & Continua》 SCIE EI 2024年第4期713-733,共21页
Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentime... Sentiment analysis, a crucial task in discerning emotional tones within the text, plays a pivotal role in understandingpublic opinion and user sentiment across diverse languages.While numerous scholars conduct sentiment analysisin widely spoken languages such as English, Chinese, Arabic, Roman Arabic, and more, we come to grapplingwith resource-poor languages like Urdu literature which becomes a challenge. Urdu is a uniquely crafted language,characterized by a script that amalgamates elements from diverse languages, including Arabic, Parsi, Pashtu,Turkish, Punjabi, Saraiki, and more. As Urdu literature, characterized by distinct character sets and linguisticfeatures, presents an additional hurdle due to the lack of accessible datasets, rendering sentiment analysis aformidable undertaking. The limited availability of resources has fueled increased interest among researchers,prompting a deeper exploration into Urdu sentiment analysis. This research is dedicated to Urdu languagesentiment analysis, employing sophisticated deep learning models on an extensive dataset categorized into fivelabels: Positive, Negative, Neutral, Mixed, and Ambiguous. The primary objective is to discern sentiments andemotions within the Urdu language, despite the absence of well-curated datasets. To tackle this challenge, theinitial step involves the creation of a comprehensive Urdu dataset by aggregating data from various sources such asnewspapers, articles, and socialmedia comments. Subsequent to this data collection, a thorough process of cleaningand preprocessing is implemented to ensure the quality of the data. The study leverages two well-known deeplearningmodels, namely Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), for bothtraining and evaluating sentiment analysis performance. Additionally, the study explores hyperparameter tuning tooptimize the models’ efficacy. Evaluation metrics such as precision, recall, and the F1-score are employed to assessthe effectiveness of the models. The research findings reveal that RNN surpasses CNN in Urdu sentiment analysis,gaining a significantly higher accuracy rate of 91%. This result accentuates the exceptional performance of RNN,solidifying its status as a compelling option for conducting sentiment analysis tasks in the Urdu language. 展开更多
关键词 Urdu sentiment analysis convolutional neural networks recurrent neural network deep learning natural language processing neural networks
下载PDF
RUSAS: Roman Urdu Sentiment Analysis System
7
作者 Kazim Jawad Muhammad Ahmad +1 位作者 Majdah Alvi Muhammad Bux Alvi 《Computers, Materials & Continua》 SCIE EI 2024年第4期1463-1480,共18页
Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify thesentiments in the opinionated text data. People share their judgments, reactions, and feedback on the intern... Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify thesentiments in the opinionated text data. People share their judgments, reactions, and feedback on the internetusing various languages. Urdu is one of them, and it is frequently used worldwide. Urdu-speaking people prefer tocommunicate on social media in Roman Urdu (RU), an English scripting style with the Urdu language dialect.Researchers have developed versatile lexical resources for features-rich comprehensive languages, but limitedlinguistic resources are available to facilitate the sentiment classification of Roman Urdu. This effort encompassesextracting subjective expressions in Roman Urdu and determining the implied opinionated text polarity. Theprimary sources of the dataset are Daraz (an e-commerce platform), Google Maps, and the manual effort. Thecontributions of this study include a Bilingual Roman Urdu Language Detector (BRULD) and a Roman UrduSpelling Checker (RUSC). These integrated modules accept the user input, detect the text language, correct thespellings, categorize the sentiments, and return the input sentence’s orientation with a sentiment intensity score.The developed system gains strength with each input experience gradually. The results show that the languagedetector gives an accuracy of 97.1% on a close domain dataset, with an overall sentiment classification accuracy of94.3%. 展开更多
关键词 Roman Urdu sentiment analysis Roman Urdu language detector Roman Urdu spelling checker FLASK
下载PDF
Aspect-Level Sentiment Analysis Based on Deep Learning
8
作者 Mengqi Zhang Jiazhao Chai +2 位作者 Jianxiang Cao Jialing Ji Tong Yi 《Computers, Materials & Continua》 SCIE EI 2024年第3期3743-3762,共20页
In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also gr... In recent years,deep learning methods have developed rapidly and found application in many fields,including natural language processing.In the field of aspect-level sentiment analysis,deep learning methods can also greatly improve the performance of models.However,previous studies did not take into account the relationship between user feature extraction and contextual terms.To address this issue,we use data feature extraction and deep learning combined to develop an aspect-level sentiment analysis method.To be specific,we design user comment feature extraction(UCFE)to distill salient features from users’historical comments and transform them into representative user feature vectors.Then,the aspect-sentence graph convolutional neural network(ASGCN)is used to incorporate innovative techniques for calculating adjacency matrices;meanwhile,ASGCN emphasizes capturing nuanced semantics within relationships among aspect words and syntactic dependency types.Afterward,three embedding methods are devised to embed the user feature vector into the ASGCN model.The empirical validations verify the effectiveness of these models,consistently surpassing conventional benchmarks and reaffirming the indispensable role of deep learning in advancing sentiment analysis methodologies. 展开更多
关键词 Aspect-level sentiment analysis deep learning graph convolutional neural network user features syntactic dependency tree
下载PDF
Integrating Ontology-Based Approaches with Deep Learning Models for Fine-Grained Sentiment Analysis
9
作者 Longgang Zhao Seok-Won Lee 《Computers, Materials & Continua》 SCIE EI 2024年第10期1855-1877,共23页
Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these cha... Although sentiment analysis is pivotal to understanding user preferences,existing models face significant challenges in handling context-dependent sentiments,sarcasm,and nuanced emotions.This study addresses these challenges by integrating ontology-based methods with deep learning models,thereby enhancing sentiment analysis accuracy in complex domains such as film reviews and restaurant feedback.The framework comprises explicit topic recognition,followed by implicit topic identification to mitigate topic interference in subsequent sentiment analysis.In the context of sentiment analysis,we develop an expanded sentiment lexicon based on domainspecific corpora by leveraging techniques such as word-frequency analysis and word embedding.Furthermore,we introduce a sentiment recognition method based on both ontology-derived sentiment features and sentiment lexicons.We evaluate the performance of our system using a dataset of 10,500 restaurant reviews,focusing on sentiment classification accuracy.The incorporation of specialized lexicons and ontology structures enables the framework to discern subtle sentiment variations and context-specific expressions,thereby improving the overall sentiment-analysis performance.Experimental results demonstrate that the integration of ontology-based methods and deep learning models significantly improves sentiment analysis accuracy. 展开更多
关键词 Deep learning ONTOLOGY fine-grained sentiment analysis online reviews
下载PDF
GP‐FMLNet:A feature matrix learning network enhanced by glyph and phonetic information for Chinese sentiment analysis
10
作者 Jing Li Dezheng Zhang +2 位作者 Yonghong Xie Aziguli Wulamu Yao Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期960-972,共13页
Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a sin... Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms. 展开更多
关键词 aspect‐level sentiment analysis deep learning feature extraction glyph and phonetic feature matrix compound learning
下载PDF
A Robust Framework for Multimodal Sentiment Analysis with Noisy Labels Generated from Distributed Data Annotation
11
作者 Kai Jiang Bin Cao Jing Fan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2965-2984,共20页
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha... Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and share such multimodal data.However,due to professional discrepancies among annotators and lax quality control,noisy labels might be introduced.Recent research suggests that deep neural networks(DNNs)will overfit noisy labels,leading to the poor performance of the DNNs.To address this challenging problem,we present a Multimodal Robust Meta Learning framework(MRML)for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously.Specifically,we propose a two-layer fusion net to deeply fuse different modalities and improve the quality of the multimodal data features for label correction and network training.Besides,a multiple meta-learner(label corrector)strategy is proposed to enhance the label correction approach and prevent models from overfitting to noisy labels.We conducted experiments on three popular multimodal datasets to verify the superiority of ourmethod by comparing it with four baselines. 展开更多
关键词 Distributed data collection multimodal sentiment analysis meta learning learn with noisy labels
下载PDF
User Profile & Attitude Analysis Based on Unstructured Social Media and Online Activity
12
作者 Yuting Tan Vijay K. Madisetti 《Journal of Software Engineering and Applications》 2024年第6期463-473,共11页
As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain ... As social media and online activity continue to pervade all age groups, it serves as a crucial platform for sharing personal experiences and opinions as well as information about attitudes and preferences for certain interests or purchases. This generates a wealth of behavioral data, which, while invaluable to businesses, researchers, policymakers, and the cybersecurity sector, presents significant challenges due to its unstructured nature. Existing tools for analyzing this data often lack the capability to effectively retrieve and process it comprehensively. This paper addresses the need for an advanced analytical tool that ethically and legally collects and analyzes social media data and online activity logs, constructing detailed and structured user profiles. It reviews current solutions, highlights their limitations, and introduces a new approach, the Advanced Social Analyzer (ASAN), that bridges these gaps. The proposed solutions technical aspects, implementation, and evaluation are discussed, with results compared to existing methodologies. The paper concludes by suggesting future research directions to further enhance the utility and effectiveness of social media data analysis. 展开更多
关键词 Social Media User Behavior analysis Sentiment analysis Data Mining Machine Learning User Profiling CYBERSECURITY Behavioral Insights Personality Prediction
下载PDF
Artificial Intelligence-Based Sentiment Analysis of Dynamic Message Signs that Report Fatality Numbers Using Connected Vehicle Data
13
作者 Dorcas O. Okaidjah Jonathan Wood Christopher M. Day 《Journal of Transportation Technologies》 2024年第4期590-606,共17页
This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influe... This study presents results from sentiment analysis of Dynamic message sign (DMS) message content, focusing on messages that include numbers of road fatalities. As a traffic management tool, DMS plays a role in influencing driver behavior and assisting transportation agencies in achieving safe and efficient traffic movement. However, the psychological and behavioral effects of displaying fatality numbers on DMS remain poorly understood;hence, it is important to know the potential impacts of displaying such messages. The Iowa Department of Transportation displays the number of fatalities on a first screen, followed by a supplemental message hoping to promote safe driving;an example is “19 TRAFFIC DEATHS THIS YEAR IF YOU HAVE A SUPER BOWL DON’T DRIVE HIGH.” We employ natural language processing to decode the sentiment and undertone of the supplementary message and investigate how they influence driving speeds. According to the results of a mixed effect model, drivers reduced speeds marginally upon encountering DMS fatality text with a positive sentiment with a neutral undertone. This category had the largest associated amount of speed reduction, while messages with negative sentiment with a negative undertone had the second largest amount of speed reduction, greater than other combinations, including positive sentiment with a positive undertone. 展开更多
关键词 Intelligent Transportation System Sentiment analysis Dynamic Message Signs Large Language Models Traffic Safety Artificial Intelligence
下载PDF
Analysis of Public Sentiment regarding COVID-19 Vaccines on the Social Media Platform Reddit
14
作者 Lucien Dikla Ngueleo Jules Pagna Disso +2 位作者 Armel Ayimdji Tekemetieu Justin Moskolaï Ngossaha Michael Nana Kameni 《Journal of Computer and Communications》 2024年第2期80-108,共29页
This study undertakes a thorough analysis of the sentiment within the r/Corona-virus subreddit community regarding COVID-19 vaccines on Reddit. We meticulously collected and processed 34,768 comments, spanning from No... This study undertakes a thorough analysis of the sentiment within the r/Corona-virus subreddit community regarding COVID-19 vaccines on Reddit. We meticulously collected and processed 34,768 comments, spanning from November 20, 2020, to January 17, 2021, using sentiment calculation methods such as TextBlob and Twitter-RoBERTa-Base-sentiment to categorize comments into positive, negative, or neutral sentiments. The methodology involved the use of Count Vectorizer as a vectorization technique and the implementation of advanced ensemble algorithms like XGBoost and Random Forest, achieving an accuracy of approximately 80%. Furthermore, through the Dirichlet latent allocation, we identified 23 distinct reasons for vaccine distrust among negative comments. These findings are crucial for understanding the community’s attitudes towards vaccination and can guide targeted public health messaging. Our study not only provides insights into public opinion during a critical health crisis, but also demonstrates the effectiveness of combining natural language processing tools and ensemble algorithms in sentiment analysis. 展开更多
关键词 COVID-19 Vaccine TextBlob Twitter-RoBERTa-Base-Sentiment Sentiment analysis Latent Dirichlet Allocation
下载PDF
Aspect-Level Sentiment Analysis Incorporating Semantic and Syntactic Information
15
作者 Jiachen Yang Yegang Li +2 位作者 Hao Zhang Junpeng Hu Rujiang Bai 《Journal of Computer and Communications》 2024年第1期191-207,共17页
Aiming at the problem that existing models in aspect-level sentiment analysis cannot fully and effectively utilize sentence semantic and syntactic structure information, this paper proposes a graph neural network-base... Aiming at the problem that existing models in aspect-level sentiment analysis cannot fully and effectively utilize sentence semantic and syntactic structure information, this paper proposes a graph neural network-based aspect-level sentiment classification model. Self-attention, aspectual word multi-head attention and dependent syntactic relations are fused and the node representations are enhanced with graph convolutional networks to enable the model to fully learn the global semantic and syntactic structural information of sentences. Experimental results show that the model performs well on three public benchmark datasets Rest14, Lap14, and Twitter, improving the accuracy of sentiment classification. 展开更多
关键词 Aspect-Level Sentiment analysis Attentional Mechanisms Dependent Syntactic Trees Graph Convolutional Neural Networks
下载PDF
Artificial Intelligence Based Sentence Level Sentiment Analysis of COVID-19
16
作者 Sundas Rukhsar Mazhar Javed Awan +5 位作者 Usman Naseem Dilovan Asaad Zebari Mazin Abed Mohammed Marwan Ali Albahar Mohammed Thanoon Amena Mahmoud 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期791-807,共17页
Web-blogging sites such as Twitter and Facebook are heavily influenced by emotions,sentiments,and data in the modern era.Twitter,a widely used microblogging site where individuals share their thoughts in the form of t... Web-blogging sites such as Twitter and Facebook are heavily influenced by emotions,sentiments,and data in the modern era.Twitter,a widely used microblogging site where individuals share their thoughts in the form of tweets,has become a major source for sentiment analysis.In recent years,there has been a significant increase in demand for sentiment analysis to identify and classify opinions or expressions in text or tweets.Opinions or expressions of people about a particular topic,situation,person,or product can be identified from sentences and divided into three categories:positive for good,negative for bad,and neutral for mixed or confusing opinions.The process of analyzing changes in sentiment and the combination of these categories is known as“sentiment analysis.”In this study,sentiment analysis was performed on a dataset of 90,000 tweets using both deep learning and machine learning methods.The deep learning-based model long-short-term memory(LSTM)performed better than machine learning approaches.Long short-term memory achieved 87%accuracy,and the support vector machine(SVM)classifier achieved slightly worse results than LSTM at 86%.The study also tested binary classes of positive and negative,where LSTM and SVM both achieved 90%accuracy. 展开更多
关键词 COVID-19 artificial intelligence machine learning deep learning sentimental analysis support vector classifier
下载PDF
Improving Sentiment Analysis in Election-Based Conversations on Twitter with ElecBERT Language Model 被引量:3
17
作者 Asif Khan Huaping Zhang +2 位作者 Nada Boudjellal Arshad Ahmad Maqbool Khan 《Computers, Materials & Continua》 SCIE EI 2023年第9期3345-3361,共17页
Sentiment analysis plays a vital role in understanding public opinions and sentiments toward various topics.In recent years,the rise of social media platforms(SMPs)has provided a rich source of data for analyzing publ... Sentiment analysis plays a vital role in understanding public opinions and sentiments toward various topics.In recent years,the rise of social media platforms(SMPs)has provided a rich source of data for analyzing public opinions,particularly in the context of election-related conversations.Nevertheless,sentiment analysis of electionrelated tweets presents unique challenges due to the complex language used,including figurative expressions,sarcasm,and the spread of misinformation.To address these challenges,this paper proposes Election-focused Bidirectional Encoder Representations from Transformers(ElecBERT),a new model for sentiment analysis in the context of election-related tweets.Election-related tweets pose unique challenges for sentiment analysis due to their complex language,sarcasm,andmisinformation.ElecBERT is based on the Bidirectional Encoder Representations from Transformers(BERT)language model and is fine-tuned on two datasets:Election-Related Sentiment-Annotated Tweets(ElecSent)-Multi-Languages,containing 5.31 million labeled tweets in multiple languages,and ElecSent-English,containing 4.75million labeled tweets in English.Themodel outperforms othermachine learning models such as Support Vector Machines(SVM),Na飗e Bayes(NB),and eXtreme Gradient Boosting(XGBoost),with an accuracy of 0.9905 and F1-score of 0.9816 on ElecSent-Multi-Languages,and an accuracy of 0.9930 and F1-score of 0.9899 on ElecSent-English.The performance of differentmodels was compared using the 2020 United States(US)Presidential Election as a case study.The ElecBERT-English and ElecBERT-Multi-Languages models outperformed BERTweet,with the ElecBERT-English model achieving aMean Absolute Error(MAE)of 6.13.This paper presents a valuable contribution to sentiment analysis in the context of election-related tweets,with potential applications in political analysis,social media management,and policymaking. 展开更多
关键词 Sentiment analysis social media election prediction machine learning TRANSFORMERS
下载PDF
Sine Cosine Optimization with Deep Learning-Based Applied Linguistics for Sentiment Analysis on COVID-19 Tweets 被引量:1
18
作者 Abdelwahed Motwakel Hala J.Alshahrani +5 位作者 Abdulkhaleq Q.A.Hassan Khaled Tarmissi Amal S.Mehanna Ishfaq Yaseen Amgad Atta Abdelmageed Mohammad Mahzari 《Computers, Materials & Continua》 SCIE EI 2023年第6期4767-4783,共17页
Applied linguistics is an interdisciplinary domain which identifies,investigates,and offers solutions to language-related real-life problems.The new coronavirus disease,otherwise known as Coronavirus disease(COVID-19)... Applied linguistics is an interdisciplinary domain which identifies,investigates,and offers solutions to language-related real-life problems.The new coronavirus disease,otherwise known as Coronavirus disease(COVID-19),has severely affected the everyday life of people all over the world.Specifically,since there is insufficient access to vaccines and no straight or reliable treatment for coronavirus infection,the country has initiated the appropriate preventive measures(like lockdown,physical separation,and masking)for combating this extremely transmittable disease.So,individuals spent more time on online social media platforms(i.e.,Twitter,Facebook,Instagram,LinkedIn,and Reddit)and expressed their thoughts and feelings about coronavirus infection.Twitter has become one of the popular social media platforms and allows anyone to post tweets.This study proposes a sine cosine optimization with bidirectional gated recurrent unit-based senti-ment analysis(SCOBGRU-SA)on COVID-19 tweets.The SCOBGRU-SA technique aimed to detect and classify the various sentiments in Twitter data during the COVID-19 pandemic.The SCOBGRU-SA technique follows data pre-processing and the Fast-Text word embedding process to accomplish this.Moreover,the BGRU model is utilized to recognise and classify sen-timents present in the tweets.Furthermore,the SCO algorithm is exploited for tuning the BGRU method’s hyperparameter,which helps attain improved classification performance.The experimental validation of the SCOBGRU-SA technique takes place using a benchmark dataset,and the results signify its promising performance compared to other DL models. 展开更多
关键词 Applied linguistics deep learning sentiment analysis COVID-19 pandemic sine cosine optimization TWITTER
下载PDF
Optimal Machine Learning Driven Sentiment Analysis on COVID-19 Twitter Data 被引量:1
19
作者 Bahjat Fakieh Abdullah S.AL-Malaise AL-Ghamdi +1 位作者 Farrukh Saleem Mahmoud Ragab 《Computers, Materials & Continua》 SCIE EI 2023年第4期81-97,共17页
The outbreak of the pandemic,caused by Coronavirus Disease 2019(COVID-19),has affected the daily activities of people across the globe.During COVID-19 outbreak and the successive lockdowns,Twitter was heavily used and... The outbreak of the pandemic,caused by Coronavirus Disease 2019(COVID-19),has affected the daily activities of people across the globe.During COVID-19 outbreak and the successive lockdowns,Twitter was heavily used and the number of tweets regarding COVID-19 increased tremendously.Several studies used Sentiment Analysis(SA)to analyze the emotions expressed through tweets upon COVID-19.Therefore,in current study,a new Artificial Bee Colony(ABC)with Machine Learning-driven SA(ABCMLSA)model is developed for conducting Sentiment Analysis of COVID-19 Twitter data.The prime focus of the presented ABCML-SA model is to recognize the sentiments expressed in tweets made uponCOVID-19.It involves data pre-processing at the initial stage followed by n-gram based feature extraction to derive the feature vectors.For identification and classification of the sentiments,the Support Vector Machine(SVM)model is exploited.At last,the ABC algorithm is applied to fine tune the parameters involved in SVM.To demonstrate the improved performance of the proposed ABCML-SA model,a sequence of simulations was conducted.The comparative assessment results confirmed the effectual performance of the proposed ABCML-SA model over other approaches. 展开更多
关键词 Sentiment analysis twitter data data mining COVID-19 machine learning artificial bee colony
下载PDF
Aspect based sentiment analysis using multi-criteria decision-making and deep learning under COVID-19 pandemic in India 被引量:1
20
作者 Rakesh Dutta Nilanjana Das +1 位作者 Mukta Majumder Biswapati Jana 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第1期219-234,共16页
The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to st... The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to stay within walls and become more addicted towards social networks.They express their emotions and sympathy via these online platforms.Thus,popular social media(Twitter and Facebook)have become rich sources of information for Opinion Mining and Sentiment Analysis on COVID-19-related issues.We have used Aspect Based Sentiment Analysis to anticipate the polarity of public opinion underlying different aspects from Twitter during lockdown and stepwise unlock phases.The goal of this study is to find the feelings of Indians about the lockdown initiative taken by the Government of India to stop the spread of Coronavirus.India-specific COVID-19 tweets have been annotated,for analysing the sentiment of common public.To classify the Twitter data set a deep learning model has been proposed which has achieved accuracies of 82.35%for Lockdown and 83.33%for Unlock data set.The suggested method outperforms many of the contemporary approaches(long shortterm memory,Bi-directional long short-term memory,Gated Recurrent Unit etc.).This study highlights the public sentiment on lockdown and stepwise unlocks,imposed by the Indian Government on various aspects during the Corona outburst. 展开更多
关键词 aspect based sentiment analysis bi-directional gated recurrent unit COVID-19 deep learning k-means clustering multi-criteria decision-making natural language processing
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部