To reveal some dynamic properties of the deploying process for the solar power satellite via an arbitrarily large phased array (SPS-ALPHA) solar receiver, the symplectic Runge-Kutta method is used to simulate the si...To reveal some dynamic properties of the deploying process for the solar power satellite via an arbitrarily large phased array (SPS-ALPHA) solar receiver, the symplectic Runge-Kutta method is used to simulate the simplified model with the consideration of the Rayleigh damping effect. The system containing the Rayleigh damping can be separated and transformed into the equivalent nondamping system formally to insure the application condition of the symplectic Runge-Kutta method. First, the Lagrange equation with the Rayleigh damping governing the motion of the system is derived via the variational principle. Then, with some reasonable assumptions on the relations among the damping, mass, and stiffness matrices, the Rayleigh damping system is equivalently converted into the nondamping system formally, so that the symplectic Runge-Kutta method can be used to simulate the deploying process for the solar receiver. Finally, some numerical results of the symplectic Runge-Kutta method for the dynamic properties of the solar receiver are reported. The numerical results show that the proposed simplified model is valid for the deploying process for the SPS-ALPHA solar receiver, and the symplectic Runge-Kutta method can preserve the displacement constraints of the system well with excellent long-time numerical stability.展开更多
We show a method to separate the sound field radiated by a signal source from the sound field radiated by noise sources and to reconstruct the sound field radiated by the signal source. The proposed method is based on...We show a method to separate the sound field radiated by a signal source from the sound field radiated by noise sources and to reconstruct the sound field radiated by the signal source. The proposed method is based on reciprocity theorem and the Fourier transform. Both the sound field and its gradient on a measurement surface are needed in the method. Evanescent waves are considered in the method, which ensures a high resolution reconstruction in the near field region of the signal source when evanescent waves can be measured. A simulation is given to verify the method and the influence of measurement noise on the method is discussed.展开更多
In this paper, the separation transformation approach is extended to the (N + 1)-dimensional dispersive double sine-Gordon equation arising in many physical systems such as the spin dynamics in the B phase of SHe s...In this paper, the separation transformation approach is extended to the (N + 1)-dimensional dispersive double sine-Gordon equation arising in many physical systems such as the spin dynamics in the B phase of SHe superfluid. This equation is first reduced to a set of partial differential equations and a nonlinear ordinary differential equation. Then the general solutions of the set of partial differential equations are obta/ned and the nonlinear ordinary differential equation is solved by F-expansion method. Finally, many new exact solutions of the (N + 1)-dimensional dispersive double sine-Gordon equation are constructed explicitly via the separation transformation. For the case of N 〉 2, there is an arbitrary function in the exact solutions, which may reveal more novel nonlinear structures in the high-dimensional dispersive double sine-Gordon equation.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11432010,11672241,and 11502202)the Open Foundation of the State Key Laboratory of Structural Analysis of Industrial Equipment of China(No.GZ1605)
文摘To reveal some dynamic properties of the deploying process for the solar power satellite via an arbitrarily large phased array (SPS-ALPHA) solar receiver, the symplectic Runge-Kutta method is used to simulate the simplified model with the consideration of the Rayleigh damping effect. The system containing the Rayleigh damping can be separated and transformed into the equivalent nondamping system formally to insure the application condition of the symplectic Runge-Kutta method. First, the Lagrange equation with the Rayleigh damping governing the motion of the system is derived via the variational principle. Then, with some reasonable assumptions on the relations among the damping, mass, and stiffness matrices, the Rayleigh damping system is equivalently converted into the nondamping system formally, so that the symplectic Runge-Kutta method can be used to simulate the deploying process for the solar receiver. Finally, some numerical results of the symplectic Runge-Kutta method for the dynamic properties of the solar receiver are reported. The numerical results show that the proposed simplified model is valid for the deploying process for the SPS-ALPHA solar receiver, and the symplectic Runge-Kutta method can preserve the displacement constraints of the system well with excellent long-time numerical stability.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374270 and 11674294
文摘We show a method to separate the sound field radiated by a signal source from the sound field radiated by noise sources and to reconstruct the sound field radiated by the signal source. The proposed method is based on reciprocity theorem and the Fourier transform. Both the sound field and its gradient on a measurement surface are needed in the method. Evanescent waves are considered in the method, which ensures a high resolution reconstruction in the near field region of the signal source when evanescent waves can be measured. A simulation is given to verify the method and the influence of measurement noise on the method is discussed.
基金Supported by NSFC for Young Scholars under Grant No.11101166Tianyuan Youth Foundation of Mathematics under Grant No.11126244+1 种基金Youth PhD Development Fund of CUFE 121 Talent Cultivation Project under Grant No.QBJZH201002Scientific Research Common Program of Beijing Municipal Commission of Education under Grant No.KM201110772017
文摘In this paper, the separation transformation approach is extended to the (N + 1)-dimensional dispersive double sine-Gordon equation arising in many physical systems such as the spin dynamics in the B phase of SHe superfluid. This equation is first reduced to a set of partial differential equations and a nonlinear ordinary differential equation. Then the general solutions of the set of partial differential equations are obta/ned and the nonlinear ordinary differential equation is solved by F-expansion method. Finally, many new exact solutions of the (N + 1)-dimensional dispersive double sine-Gordon equation are constructed explicitly via the separation transformation. For the case of N 〉 2, there is an arbitrary function in the exact solutions, which may reveal more novel nonlinear structures in the high-dimensional dispersive double sine-Gordon equation.